

®

NM6403 Software Development Kit

NNeeuurrooMMaattrriixx®® NNMM66440033
PPrrooggrraammmmeerr’’ss RReeffeerreennccee

 Version 1.0
30002-01 33 02 A

 Programmer’s Reference
Version 1.0

Programmer’s Reference
Version 1.0

CCoonntteennttss

PREFACE ... 1
ABOUT THIS MANUAL.. 1
ORGANIZATION... 1
TYPOGRAPHICAL CONVENTIONS ... 1
CONVENTIONS ON FILE NAMES ... 2
SDK COMPONENTS.. 2
FEEDBACK ... 3
Feedback on This Manual .. 3
Feedback on NeuroMatrix® NM6403 Software Development Kit... 3

 SOFTWARE DEVELOPMENT KIT OVERVIEW1-1
1.1 NM6403 SOFTWARE DEVELOPMENT FLOW ..1-2
1.2 STRUCTURE OF SDK DIRECTORIES..1-2
1.3 NEURO ENVIRONMENT VARIABLE ...1-3

 C++ COMPILER..............................2-1
2.1 INTRODUCTION ..2-1
2.2 ABOUT NM6403 C++ COMPILER..2-1
2.3 GETTING STARTED WITH THE COMPILER..2-2
2.4 COMPILING C++ CODE...2-3
2.5 INVOKING THE C++ COMPILER ...2-5
2.6 SPECIFYING FILENAMES...2-5
2.7 COMPILER OPTIONS ..2-6
2.7.1 Delivery of Reference Information (-help or -? Option) ...2-8
2.7.2 Service Options (prefix -S)..2-9

2.7.2.1 Keeping Intermediate Files (-Skeeptemps and -Stmp)...2-9
2.7.2.2 Printing Out Expanded Invoking Conditions (- Snoexec Option)..2-9
2.7.2.3 Disabling Linker (- Snolink Option) ...2-9
2.7.2.4 Checking C++ Source Syntax (-Ssyntax Option)..2-10

2.7.3 C++ Compiler Options ..2-10
2.7.3.1 Creating Debug Information (-g Option) ...2-10
2.7.3.2 Adding Directories for Header Files and Libraries Search (-I and -L Options)2-10
2.7.3.3 Front-end Compilator Options (-Xargument Options)...2-11
2.7.3.4 Preprocessor Options (-D, -U, -T, -C Options) ...2-12

2.7.4 Assembler Options ...2-12
2.7.4.1 Generating an Assembly Listing File (-l Option) ...2-12
2.7.4.2 Generating a Cross-Reference Listing File (-x Option) ..2-12

2.7.5 Linker Options... 2-13
2.7.5.1 Defining Output File Name (-o Option) ...2-13
2.7.5.2 Supplying a Memory Configuration File Name (-c Option) ...2-13
2.7.5.3 Generating a Memory Map File (-m Option) ...2-13

CCoonntteennttss

ii Programmer’s Reference
Version 1.0

2.7.5.4 Supplying a Linker Command File Name (- @ Option).. 2-13
2.8 THE NMCC DEFAULT CONFIGURATION .. 2-14
2.8.1 List of Components Default Options ... 2-14
2.8.2 Default Output File Name ... 2-14

2.9 EXAMPLE OF INVOKING NMCC... 2-15
2.10 THE NMCC SHELL ERROR MESSAGES... 2-16
2.11 CHARACTERISTICS OF NM6403 C++.. 2-17
2.11.1 Standard Data Types.. 2-17
2.11.2 Identifiers and Character Set .. 2-18
2.11.3 Data Types Range (limits.h and float.h) ... 2-18

 ASSEMBLER 3-1
3.1 INTRODUCTION .. 3-2
3.2 ABOUT ASSEMBLER ... 3-2
3.3 ASSEMBLER DEVELOPMENT FLOW ... 3-2
3.4 INVOKING THE ASSEMBLER .. 3-3
3.5 ASSEMBLER OPTIONS SUMMARY.. 3-4
3.6 GENERAL OPTIONS.. 3-6
3.6.1 Printing Out Reference Information (-h, -? Options) ... 3-6
3.6.2 Disabling Output Information (-q and -i Options) .. 3-7
3.6.3 Printing Out the Banner (-t Option) ... 3-7
3.6.4 Displaying the Assembler Pathname (-p Option).. 3-7

3.7 OUTPUT FILE TYPES.. 3-7
3.7.1 Setting the Output File (-ofilename Option) .. 3-8
3.7.2 Creating an Assembly Listing File (-I Option) ... 3-8
3.7.3 Creating a Cross-References File (-х Option) .. 3-9

3.8 MACRO LIBRARIAN MODE .. 3-9
3.8.1 How to Use the Assembler as the Macro Librarian (-m[macrolib] Option)...................... 3-9
3.8.2 Adding Macros to a Macro Library (-a Option).. 3-10

3.9 CONTROLLING THE ASSEMBLER WARNING MESSAGES.. 3-10
3.9.1 Controlling Warnings Output by Their Numbers (-W[+|-]<num> Option) 3-10
3.9.2 Controlling Group of Warnings (-W[+|-]group Option) .. 3-11

3.10 ERROR MESSAGES.. 3-11
3.10.1 Warnings... 3-12
3.10.2 Errors .. 3-18
3.10.3 Internal and Fatal Errors ... 3-26

 LINKER............................... 4-1
4.1 INTRODUCTION .. 4-3
4.2 LINKER OVERVIEW... 4-3
4.2.1 Main Features... 4-4
4.2.2 Adjustment to Various Memory Configurations .. 4-4
4.2.3 Output File Types ... 4-4
4.2.4 Linker Return Value .. 4-5

4.3 LINKER DEVELOPMENT FLOW... 4-5

CCoonntteennttss

iiiProgrammer’s Reference
Version 1.0

4.4 INVOKING THE LINKER..4-6
4.5 LINKER OPTIONS SUMMARY ...4-7
4.6 GENERAL OPTIONS..4-9
4.6.1 Printing Out Reference Information (-h, -? Options) ...4-9
4.6.2 Suppressing Progress Information (-q[n][=filename] Option)..4-10
4.6.3 Displaying the Banner (-t Option)..4-11
4.6.4 Printing Out the Linker’s Location (-p Option)...4-11
4.6.5 Setting Output File Name (-ofilename Option)..4-11
4.6.6 Using a Command File (@filename Option) ...4-12

4.7 OUTPUT FILE TYPES DESCRIPTION...4-13
4.7.1 Creating an Absolute Executable File (-abs or -a Option) ..4-14
4.7.2 Creating a Relocatable Executable File (-rel или -r Option) ...4-14
4.7.3 Creating an Object File (-elf or -e Option)...4-15

4.8 SPECIFIC OPTIONS ..4-16
4.8.1 Removing an Unused Sections and Debug Information (-d4 Option)........................... 4-16
4.8.2 Keeping Debug Information (-d{1..3} Option)..4-16
4.8.3 Keeping All Data in an Optput File (-d0 Option)..4-17
4.8.4 Defining Memoty Heap Size (-heap и -heap1 Options) ..4-17
4.8.5 Defining System Stack Size (-stack=size Option)..4-18
4.8.6 Defining the Entry Point (-start=label Option) ...4-18
4.8.7 Disabling Initialization of Static Global Objects (-asm Option)...................................... 4-19
4.8.8 Defining Library Search Path (-l (lowercase "L") Option)..4-20
4.8.9 Name the Memory Map File (-mfilename Option)...4-20
4.8.10 Supplying the Configuration File Name (key -c<file_name>)...................................... 4-22
4.8.11 Setting the Default Segment Address (-addr=address Option)4-22

4.9 DEFAULT OPTIONS ..4-22
4.10 CORRECT AND INCORRECT OPTION COMBINATIONS..4-23
4.11 CONFIGURATION FILE...4-25
4.11.1 MEMORY Section...4-26

4.11.1.1 Reserved Names for Memory Banks..4-27
4.11.1.2 Memory Default Pattern ..4-27

4.11.2 SEGMENTS Section...4-27
4.11.2.1 Distribution of Segments Within the Limits of Memory Bank..4-29

4.11.3 SECTIONS Section...4-29
4.11.3.1 How to Name Data Sections...4-32

4.12 AN EXAMPLE OF USING THE LINKER ...4-32
4.13 LINKER ERROR MESSAGES ..4-34
4.13.1 Warnings... 4-35
4.13.2 Errors .. 4-36
4.13.3 Fatal Errors ... 4-40

 LIBRARIAN5-1
5.1 INTRODUCTION ..5-3
5.2 LIBRARIAN FEATURES ..5-3

CCoonntteennttss

iv Programmer’s Reference
Version 1.0

5.3 LIBRARIAN DEVELOPMENT FLOW.. 5-3
5.4 INVOKING THE LIBRARIAN... 5-4
5.5 LIBRARIAN OPTIONS .. 5-5
5.5.1 Creating the Library (-c Option) .. 5-5
5.5.2 Adding Files to the Library (-a Option).. 5-5
5.5.3 Replacing Files in the Library (–r Option) ... 5-5
5.5.4 Deleting Files from the Library (-d Option).. 5-5
5.5.5 Extracting Files from the Library (-e Option)... 5-6
5.5.6 Viewing the Content of the Library (-l Option)... 5-6
5.5.7 Printing Out Reference Information (-h/-? Option).. 5-6

5.6 USING THE COMMAND FILE .. 5-7
5.7 USING WILDCARDS ... 5-7
5.8 EXAMPLES OF INVOKING THE LIBRARIAN... 5-7
5.9 AN EXAMPLE OF USING THE LIBRARIAN .. 5-8
5.9.1 Creating the Library .. 5-8
5.9.2 Adding Object Files to the Library... 5-8
5.9.3 Extracting Object Files from the Library.. 5-8

5.9.3.1 Extracting All Files from the Library.. 5-8
5.9.4 Replacing a File in the Library .. 5-9
5.9.5 Deleting a File from the Library... 5-9

5.10 LIBRARIAN ERROR MESSAGES ... 5-9
5.10.1 Warnings... 5-10
5.10.2 Errors .. 5-10
5.10.3 Fatal Errors ... 5-11

 DECODER OF OBJECT AND EXECUTABLE FILES 6-1
6.1 INTRODUCTION .. 6-1
6.2 THE DUMPER OVERVIEW ... 6-1
6.3 INVOKING THE DUMPER ... 6-1
6.4 THE DUMPER OPTIONS.. 6-2
6.5 PROCESSING SPECIAL SECTIONS... 6-2
6.6 AN EXAMPLE OF THE DECODED ELF FILE... 6-3

7 INSTRUCTION LEVEL SIMULATOR.. 7-1
7.1 INTRODUCTION .. 7-1
7.2 ABOUT NM6403 SIMULATOR ... 7-1
7.3 INVOCATION OF SIMULATOR... 7-1
7.4 SIMULATOR’S OPTIONS.. 7-1
7.4.1 Checking Parity of the Stack Pointer (option -S) .. 7-2
7.4.2 Checking Silicon Bugs (option -B) .. 7-2
7.4.3 Memory Size Option -m .. 7-2

7.5 MEMORY CONFIGURATION ... 7-2
7.6 USER PROGRAM REQUIREMENTS... 7-2
7.6.1 Breakpoint... 7-3

7.7 PROCESSING SPEED.. 7-3

CCoonntteennttss

vProgrammer’s Reference
Version 1.0

8 ACCURATE CYCLE SIMULATOR..8-1
8.1 INTRODUCTION ..8-1
8.2 ABOUT NM6403 CYCLE SIMULATOR ..8-1
8.3 INVOCATION OF CYCLE SIMULATOR..8-1
8.4 CYCLE SIMULATOR’S OPTIONS...8-2
8.4.1 Output Option: -l, -s, -b ... 8-2
8.4.2 Memory Size Option -m ..8-2

8.5 MEMORY CONFIGURATION ...8-2
8.6 USER PROGRAM REQUIREMENTS...8-3
8.6.1 Breakpoint... 8-3

8.7 PROCESSING SPEED..8-3
8.8 EXAMPLES OF TRACE OUTPUT ...8-4
8.8.1 Trace Analysis of Events on Peripheral Buses of NM6403 ..8-4
8.8.2 Trace Analysis of Execution of User Program ..8-5

Programmer’s Reference
Version 1.0

FFiigguurreess

FIGURE 1-1. NM6403 SOFTWARE DEVELOPMENT FLOW ...1-2

FIGURE 1-2. NM6403 SDK DIRECTORY TREE...1-3

FIGURE 2-1. THE NMCC SHELL OVERVIEW ..2-4

FIGURE 2-2. THE NMCC REFERENCE INFORMATION ...2-8

FIGURE 2-3. ALIGNMENT OF DATA TYPES IN MEMORY ...2-18

FIGURE 3-1. ASSEMBLY LANGUAGE DEVELOPMENT FLOW ...3-3

FIGURE 3-2. THE ASSEMBLER REFERENCE INFORMATION..3-6

FIGURE 3-3. FRAGMENT OF AN ASSEMBLY LISTING FILE ..3-8

FIGURE 3-4. FRAGMENT OF A CROSS-REFERENCE FILE ..3-9

FIGURE 4-1. LINKER DEVELOPMENT FLOW..4-6

FIGURE 4-2. THE LINKER REFERENCE INFORMATION...4-10

FIGURE 4-3. AN EXAMPLE OF THE LINKER CONFIGURATION FILE..4-26

FIGURE 5-1. LIBRARIAN DEVELOPMENT FLOW...5-4

FIGURE 5-2. THE LIBRARIAN REFERENCE INFORMATION ..5-6

FIGURE 6-1. FRAGMENT OF DISASSEMBLED CODE SECTION..6-3

Programmer’s Reference
Version 1.0

TTaabblleess

TABLE 2-1. FILE EXTENSIONS USED IN NM6403 SDK ...2-5

TABLE 2-2. THE COMPILER GENERAL OPTIONS ...2-6

TABLE 2-3. THE NMCC SHELL OPTIONS...2-6

TABLE 2-4. THE NMCC OPTIONS CARRIED TO THE SDK COMPONENTS.................................2-7

TABLE 2-5. THE FRONT-END COMPILATOR OPTIONS ..2-11

TABLE 2-6. THE PREPROCESSOR OPTIONS...2-12

TABLE 2-7. DEFAULT EXTENSIONS FOR LINKER OUTPUT FILES ..2-13

TABLE 2-8. NM6403 C++ DATA SIZE..2-17

TABLE 3-1. GENERAL OPTIONS...3-4

TABLE 3-2. OUTPUT FILENAMES ...3-5

TABLE 3-3. MACRO LIBRARIAN MODE OPTIONS...3-5

TABLE 3-4. HANDLING OUTPUT MESSAGES...3-5

TABLE 4-1. LINKER GENERTAL OPTIONS ...4-8

TABLE 4-2. OUTPUT FILE FYPES ...4-8

TABLE 4-3. SPECIFIC OPTIONS ...4-8

TABLE 4-4. THE LINKER OUTPUT FILE EXTENTIONS...4-12

TABLE 4-5. LINKER DEFAULT OPTIONS..4-22

TABLE 4-6. THE ABSOLUTE EXECUTABLE FILE OPTIONS..4-23

TABLE 4-7.THE EXECUTABLE RELOCABLE FILE OPTIONS...4-24

TABLE 4-8. THE OBJECT FILE OPTIONS...4-24

TABLE 5-1. LIST OF LIBRARIAN OPTIONS ...5-5

TABLE 5-2. EXAMPLES OF INVOKING THE LIBRARIAN..5-7

TABLE 7-1. LIST OF SIMULATOR’S OPTIONS...7-1

TABLE 8-1. LIST OF CYCLE SIMULATOR’S OPTIONS ...8-2

TABLE 8-2. TRACE OUTPUT OF EVENTS ON PERIPHERAL BUS..8-4

Programmer’s Reference
Version 1.0

Preface

The preface describes the purpose and composition of the document,
gives a short summary of the sections and chapters, and determines the
style and symbolic notations used in this document.

Note This reference guide does not contain any information of the processor
design. To get the data on the structure of NM6403 refer to other
sources, particularly to the document of the «NeuroMatrix ®NM6403
SDK. Assembly Language Overview».

About This Manual
This Guide contains the following information:

• composition of NeuroMatrix® NM6403 Software Development Kit
(SDK);

• reference information on each component of the SDK;

• calling conventions;

• descriptions of file formats used in the DSK.

Organization
This manual is divided into chapters. Each chapter describes one of
components included in the SDK. It contains reference information about
each SDK component used for making the executable code for NM6403.
For example: purpose, description manual, conventions on file
extensions, command line options, additional utilities for viewing object
and executable files, calling convention.

Typographical Conventions
This reference guide uses the following typographical conventions:
Courier Denotes text that may be entered at the keyboard:

commands, file and program names, and assembler and
C++ source. This is most often used in syntax
descriptions.

-help It is the same as in previous case. Underlined portion of
the word indicates that a short notation can be used in
command line instead of a long one when calling a

PPrreeffaaccee

2 Programmer’s Reference
Version 1.0

program. Instead of -help the short -h can be used,
and this abbreviation will not cause the change in the
program behavior.

Courier Marks the text that should be replaced by user
information, e.g. by a path to a particular SDK
component.

Text This way that the text is marked requires special
attention.

Note Boxes like this contain information on significant notes and comments to
the context.

Conventions on File Names
When selecting file names one should keep to a notation adopted in MS-
DOS, i.e. no more than 8 symbols is allocated for a name and no more
than 3 for an extension. The extension should be separated by a point. All
files should have extensions.

Note Information on what particular extensions should be used for particular
types of files is presented in chapters describing corresponding
components using these extensions.

Example of a file name corresponding to above conventions:
d:\mydir\my_file.cpp

SDK Components
There is a list of NM6403 SDK components and a list of its filenames,
which are described in this manual.

nmcc Compiler C++

(nmcc shell)
Chapter 2

asm Assembler Chapter 3
linker Linker Chapter 4
libr Object Files Librarian Chapter 5
dump Decoder of Object and

Executable Files
Chapter 6

emurun Instruction Level
Simulator

Chapter 7

temu Accurate Cycle Chapter 8

SSooffttwwaarree DDeevveellooppmmeenntt KKiitt OOvveerrvviieeww

3Programmer’s Reference
Version 1.0

Simulator

SDK contains C run-time library that is presented both as a source code
and as object library. In the second case it is named libc.lib and located
in LIB directory.

Feedback

Feedback on This Manual
If you have feedback on this manual, please contact your supplier,
giving:

• the manual’s title;

• the manual’s document number;

• the page number(s) to which your comments refer;

• a concise explanation of the comment.

General suggestions for additions and improvements are also welcome.

Feedback on NeuroMatrix® NM6403 Software Development Kit

If you have comments or suggestions about the NeuroMatrix® NM6403
Software Development Kit, please contact your supplier, giving:

• the platform and release of the NeuroMatrix® NM6403 software tools
you are using;

• a small sample code fragment which illustrates your comment;

• precise description of your comment or suggestion.

Programmer’s Reference
Version 1.0

1 Software Development Kit Overview

1.1 NM6403 SOFTWARE DEVELOPMENT FLOW ..1-2
1.2 STRUCTURE OF SDK DIRECTORIES..1-2
1.3 NEURO ENVIRONMENT VARIABLE ...1-3

Programmer’s Reference
Version 1.0

1.1 NM6403 Software Development Flow
Figure 1-1 shows the C++ and assembly language development flow.

Figure 1-1. NM6403 Software Development Flow

Assembler

C++ Compiler

C++ Source
Files

Assembler
Source

ELF Object
Librarian

Assembler

ELF Object
Files

Linker

Executable ELF
Object Files

Processor
NeuroMatrix®NM6403

NM6403 Simulator
Family

Handmade
Assembly Source Files

Results of
Execution

Debugging

Macro
Libraries

Macro
Source Files

ELF Object
Libraries

1.2 Structure of SDK Directories

For convenience of work with NeuroMatrix® NM6403 SDK a
predetermined structure of directories is used. It is described by the
following directory tree:

SSooffttwwaarree DDeevveellooppmmeenntt KKiitt OOvveerrvviieeww

1-3Programmer’s Reference
Version 1.0

Figure 1-2. NM6403 SDK Directory Tree

BIN
Executable Files

Directory

NEURO
Main Directory
for NM6403 SDK

INCLUDE
Header Files
Directory

LIB
Library Files

Directory

LIBLOAD
Load and Exchange
Library Directory

EXAMPLES
Examples of NM6403

Applications

CRT
C Run-Time Library

Source Files

DOC
SDK Documents

The content of the directories depends on the version of NM6403 SDK
supplied. It is presented in the document on the SDK installation.

1.3 NEURO Environment Variable
To enable SDK components to automatically find all necessary libraries
and header files in the course of compiling and assembling application
programs NEURO environment variable is introduced.

SSooffttwwaarree DDeevveellooppmmeenntt KKiitt OOvveerrvviieeww

1-4 Programmer’s Reference
Version 1.0

The environment variable is placed into file autoexec.bat in the form
of the following line:
NEURO=<path_to_the_main_SDK_directory>

for example:
SET NEURO=D:\NEURO

Apart from pre-setting the environment variable to file autoexec.bat
section PATH should be complemented with path to catalogue BIN,
since it contains the NM6403 SDK executable programs:
PATH=%PATH%;D:\NEURO\BIN

Those modifications of autoexec.bat are made automatically at the
stage of installation. The user can also make those changes later, but they
must be done before start using SDK.

Programmer’s Reference
Version 1.0

2 C++ Compiler

2.1 INTRODUCTION ..2-1
2.2 ABOUT NM6403 C++ COMPILER..2-1
2.3 GETTING STARTED WITH THE COMPILER..2-2
2.4 COMPILING C++ CODE...2-3
2.5 INVOKING THE C++ COMPILER ...2-5
2.6 SPECIFYING FILENAMES...2-5
2.7 COMPILER OPTIONS ..2-6
2.7.1 Delivery of Reference Information (-help or -? Option) ...2-8
2.7.2 Service Options (prefix -S)..2-9

2.7.2.1 Keeping Intermediate Files (-Skeeptemps and -Stmp)...2-9
2.7.2.2 Printing Out Expanded Invoking Conditions (- Snoexec Option)..2-9
2.7.2.3 Disabling Linker (- Snolink Option) ...2-9
2.7.2.4 Checking C++ Source Syntax (-Ssyntax Option)..2-10

2.7.3 C++ Compiler Options ..2-10
2.7.3.1 Creating Debug Information (-g Option) ...2-10
2.7.3.2 Adding Directories for Header Files and Libraries Search (-I and -L Options)2-10
2.7.3.3 Front-end Compilator Options (-Xargument Options)...2-11
2.7.3.4 Preprocessor Options (-D, -U, -T, -C Options) ...2-12

2.7.4 Assembler Options ...2-12
2.7.4.1 Generating an Assembly Listing File (-l Option) ...2-12
2.7.4.2 Generating a Cross-Reference Listing File (-x Option) ..2-12

2.7.5 Linker Options... 2-13
2.7.5.1 Defining Output File Name (-o Option) ...2-13
2.7.5.2 Supplying a Memory Configuration File Name (-c Option) ...2-13
2.7.5.3 Generating a Memory Map File (-m Option) ...2-13
2.7.5.4 Supplying a Linker Command File Name (- @ Option) ..2-13

2.8 THE NMCC DEFAULT CONFIGURATION ..2-14
2.8.1 List of Components Default Options ...2-14
2.8.2 Default Output File Name ...2-14

2.9 EXAMPLE OF INVOKING NMCC...2-15
2.10 THE NMCC SHELL ERROR MESSAGES...2-16
2.11 CHARACTERISTICS OF NM6403 C++..2-17
2.11.1 Standard Data Types..2-17
2.11.2 Identifiers and Character Set ..2-18
2.11.3 Data Types Range (limits.h and float.h)..2-18

Programmer’s Reference
Version 1.0

2.1 Introduction
This chapter contains information about NM6403 C++ compiler. It
contains the data about the C++ language version supported by the
compiler, short information of the compiler composition, options of
compiler control and gives an example of compiling a simple program.

Note This reference guide cannot be used as an introductory course in
programming in C++ language; neither it contains reference information
on C++ language.

2.2 About NM6403 C++ Compiler
The NM6403 C++ Compiler is a full-featured compiler that translates
C/C++ programs into NM6403 assembly language source. The following
list describes key characteristics of the compiler:

• NM6403 C++ Compiler supports definition of C++ language described
in draft standard ANSI X3J16/95-0029 with the exception some kind
of templates.

• The compiler is designed as a Windows 95/98/NT console application
and is controlled by command line options.

• The compiler package comes with the runtime library libc.lib. The
source code of the contents of the library is available in the CRT
directory of the installed NM6403 SDK. The library includes functions
for time-keeping, dynamic memory allocation, data conversion, and
floating-point arithmetic.

• The compiler supports a flat memory model. There are no any
restrictions on object code size. Memory space is limited only by
configuration of hardware.

• The compiler package includes a shell program, which enables the user
to execute all steps of program translation into NM6403 executable
code with one command.

• The compiler has straightforward calling conventions, allowing the
user to easily write assembly and C/C++ functions that call each other.

• Executable and Linkable File (ELF) format allows the user to define
system’s memory map at a link time. This maximizes performance by
enabling the user to link C/C++ code and data into specific memory
areas.

• Debugging Information format DWARF provides rich support for
source-level debugging.

CC++++ CCoommppiilleerr

2-2 Programmer’s Reference
Version 1.0

• Data sizes of char, short, int, float types are 32 bits; data sizes of
long and double types are 64 bits.

2.3 Getting Started With the Compiler
The NM6403 C++ compiler produces a single assembly language source
file that must be assembled and linked. The simplest way to compile,
assemble, and link a C++ program is to use the nmcc shell program,
which is included with the compiler. This section provides a quick
walkthrough so that the user can get started without reading the entire
programmer’s guide.

1) Create a simple file called MyApp.cpp that contains the following
code:

 /**/
 /* MyApp.cpp */
 /* (Simple file for walkthrough) */
 /**/

 #include <time.h>

 clock_t t0;

 int main()

 {

 t0 = clock();
 if (t0 < 1000) return t0;
 else return -1;
 }

2) Invoke nmcc to run the compiler, assembler and linker:

nmcc MyApp.cpp

The shell program runs compiler, assembler and linker as follows:
preproc → Preprocessor
c0 → Front-end compilator
codegen → Code Generator
asm → Assembler
linker → Linker
In case no errors were found, the shell prints nothing.
By default, nmcc deletes the assembly language output file after
translation is finished. Use –Stemp option to retain assembly
language file and other temporary files:

nmcc –Stemp MyApp.cpp

3) By default, nmcc creates an ELF object files (.elf) and ELF
absolute executable file (.abs). The absolute executable file may be

CC++++ CCoommppiilleerr

2-3Programmer’s Reference
Version 1.0

run on an instruction level simulator:

emurun MyApp.abs

The instruction level simulator executes the program and prints the
returned value, for example:

MyApp.abs: : WARNING: return 21 = 0x15

4) To compile the program with debug information –g option is used.

nmcc –g MyApp.cpp

5) Invoke emudbg to debug the program step-by-step on the NM6403
Source Level Debugger. Load MyApp.abs from disk into a
disassembler window. To debug the program on a source level select
the menu item VIEW|SOURCE|MyApp.cpp.

For more information about invoking the C++ compiler and the nmcc
shell program, refer to Section 2.4 on page 2-3.

2.4 Compiling C++ Code

NeuroMatrix® NM6403 SDK contains a special utility, called nmcc
shell program, which enables the user to execute all steps of program
translation into NM6403 executable code with one command. This
paragraph provides a complete description of how to use nmcc to
compile, assemble and link the user programs.

The nmcc shell runs one or more source modules through the following:

• The compiler includes the preprocessor, front-end compilator and code
generator.

• The assembler generates ELF object file.

• The linker links object files and object libraries to create an executable
object file. It can be omitted (with –Snolink option) if the user needs
to get only object files, for instance, to build a library.

By default, nmcc compiles, assembles and links files. Figure 2-1
illustrates the path nmcc shell takes.

CC++++ CCoommppiilleerr

2-4 Programmer’s Reference
Version 1.0

Figure 2-1. The nmcc Shell Overview

C++ compiler

Code Generator

Parser

Preprocessor

Linker

C++ Source
Files

Assembler
Source

Assembler

nmcc
shell

Executable
ELF Object

File

Assembly Language
Files

Object Files and
Libraries

Macro
Linraries

Command Line
Options

ELF Object
Files

CC++++ CCoommppiilleerr

2-5Programmer’s Reference
Version 1.0

2.5 Invoking the C++ Compiler

nmcc [-options] [filenames]

nmcc is the command that
invokes the compiler, the
assembler and the linker.

options affect the way the
compiler processes input
files.

filenames are one or more C/C++
source files, assembly
source files, object files,
object libraries, macro
libraries.

The options control the way the compiler processes files. The filenames
provide a method of identifying source files and output files. Options and
filenames can be specified in any order on the command line.

Depending on a file extension to be processed nmcc invokes the
appropriate SDK component. The specified filenames are listed below.

2.6 Specifying Filenames
The NM6403 SDK specifies the following extensions for designating file
types:

Table 2-1. File Extensions Used in NM6403 SDK
EXTENSION FILE TYPE

.cpp, .c C/C++ source file.

.hpp, .h C/C++ header file.

.asm Assembly source file.

.elf,.elz Object file.

.abs Absolute executable file.

.rel Relocatable executable file.

.lib Object library.

.mlb Macro library.

.lst Listing of assembly source file.

CC++++ CCoommppiilleerr

2-6 Programmer’s Reference
Version 1.0

.map Memory map file.

Files without extensions are rejected by nmcc. The conventions for
filename extensions allow the user to compile C/C++ files, assemble
assembly files, link object files with a single command.

2.7 Compiler Options
Command line options control the operation of both nmcc and the
programs it calls. This section provides a description of option
conventions, an input summary table, and a details description of each of
the options.

Options are single letters or multi-letter words, are case sensitive, and
are preceded by a hyphen. Each option must be separated from others.
Options can be specified in any order. Options that have parameters, such
as –ooutfilename, should not be separated from them. If the parameter
is separated from the option with a space, the option is ignored by nmcc;
the separated parameter is treated as an input file.

Some default paths to header files and libraries can be set up by using the
NEURO environment variable. It specifies the path to the INCLUDE
directory and to the LIB directory that contains C runtime library. For a
detailed description of the NEURO environment variable, refer to section
1.3 on page 1-3.

Table 2-2. The Compiler General Options
OPTIONS DESCRIPTION

-help,
-h

Print out all options.

Table 2-3. The nmcc Shell Options

OPTIONS DESCRIPTION

-Stmp,
-Skeeptemps

Do not remove intermediate files.

-Snoexec Instead of invoking the compiler, the assembler
and the linker nmcc prints out all information
about the components invoking conditions, a list
of command line options used to compile,
assemble and link each source file of the user’s
program, and expanded paths.

-Snolink Do not invoke the linker.
-Ssyntax Invoke only the preprocessor and the front-end

compilator to check syntax of a C++ source file.

CC++++ CCoommppiilleerr

2-7Programmer’s Reference
Version 1.0

Table 2-4. The nmcc Options Carried to the SDK Components

OPTIONS DESCRIPTION

-g Enable symbolic debugging.
-I<dir> Add dir to #include search path.
-L<lib_dir> Add lib_dir to libraries search path.
-X<option> Set the options of the front-end compilator.
-D<symbol_name> Predefine symbol_name.
-U<symbol_name> Undefine symbol_name.
-T Distinguish identifiers of C++ programs by first

eight symbols.
-С Do not remove initial comments when

compiling C++ files.
-l<filename> Create an assembly listing file.
-x<filename> Create a cross-references file.
-o<filename> Name the output file.
-c<filename> Supply memory configuration file name.
-m<filename> Name the map file.
-@<filename> Supply command file for the linker.
-abs Generate absolute file (the default option).
-rel Generate relocable file.
-elf Generate object file.
-heap=XXXX Set memory heap size on a local bus to XXXX

words.
-heap1=XXXX Set memory heap size on a global bus to XXXX

words.
-stack=XXXX Set stack size to XXXX words.
-start Define entry point.
-addr=XXXX Set address of a segment (can be used when the

memory configuration file is not supplied).

Detailed description of the component options can be found in the
correspondent chapters.

CC++++ CCoommppiilleerr

2-8 Programmer’s Reference
Version 1.0

2.7.1 Delivery of Reference Information (-help or -? Option)
When invoking nmcc with the only -help or -? option, help information
is printed out. It gives the user short reference on every option
controlling nmcc behaviors. The following information will appear on
the screen:

Figure 2-2. The nmcc Reference Information

NeuroMatrix(r) NM6403 C++ Compiler v1.5.4

List of available options:

Miscellaneous options:

 -help,-h,-? print out this help.

 -Skeeptemps[=<>] do not delete the temporary files

 [and specify temp directory]

 (synonym '-Stmp'),

 -Snoexec do not execute constructed commands

 but rather print it to stdout,

 -Snolink only compile to object files,

 -Ssyntax check for syntax errors only

 (do not create any files).

Code Generation options:

 -g generate and keep debug info,

 -O turn on optimization,

 -B disable NM6403 silicon bugs correction,

Preprocessor options:

 -I<> specify include directory,

 -L<> specify libraries path,

 -X<> set frontend option,

 -D<> define macro,

 -U<> undefine macro,

 -T differ identifiers by 8 first symbols,

 -C do not delete comments,

Output files:

 -l<> specify assembler listing file,

 -x<> specify assembler cross-reference file,

 -o<> specify output file name,

 -c<> specify linker configuration file,

 -m<> generate map file,

 -@<> specify linker command file.

Explanation of the other permitted options:

 -heap -heap1 -stack -start -addr -asm -abs -rel -elf -rom,

see in the linker documentation.

After displaying this message nmcc operation is completed.

The same reference information is printed out when starting nmcc
without command line options at all.

CC++++ CCoommppiilleerr

2-9Programmer’s Reference
Version 1.0

2.7.2 Service Options (prefix -S)
All nmcc service options begin with -S prefix.

2.7.2.1 Keeping Intermediate Files (-Skeeptemps and -Stmp)

This option is used to keep intermediate files generated by the C++
compiler components. The options -Stmp and -Skeeptemps are
synonyms. The intermediate files are as follows:

• .cc - files resulted from the preprocessor operation;

• .ic - files resulting from the operation of the front-end compiler;

• .asm - files generated by the code generator from files .ic.

By default, when a given option is not set, nmcc deletes all intermediate
files of types listed above.

Object files .elf as well as executable files are never removed by nmcc.

Note When compiling, only those .asm files are removed that were created as a
result of the compilation of files .cpp. Coincidence of the names of files
without extension in this case serves as a criterion; for example, when
compiling file prog.cpp files prog.cc, prog.ic, prog.asm will be created. In
the absence of parameter –Stmp they will be removed.

2.7.2.2 Printing Out Expanded Invoking Conditions (- Snoexec Option)

The -Snoexec option instructs nmcc that instead of actual invoking the
package components, it should print out the list of expanded component
starting options.

This option can be helpful when the user wants to know what particular
command line options were delivered to the input of each of the
components being started.

Example:

nmcc -Snoexec MyApp.cpp

preproc -F -DNM6403 "-IC:/NEURO/include" MyApp.cpp C:/WINDOWS/TEMP/MyApp.cc

c0 -o C:/WINDOWS/TEMP/MyApp.ic C:/WINDOWS/TEMP/MyApp.cc

codegen -q C:/WINDOWS/TEMP/MyApp.ic -oC:/WINDOWS/TEMP/MyApp.asm

asm -q "-IC:/NEURO/include" C:/WINDOWS/TEMP/MyApp.asm -oMyApp.elf

linker -q "-lC:/NEURO/lib" MyApp.elf libc.lib

2.7.2.3 Disabling Linker (- Snolink Option)

The -Snolink option makes possible to disable the phase of object
modules linking. In this case, compilation stops after object files were
generated.

CC++++ CCoommppiilleerr

2-10 Programmer’s Reference
Version 1.0

2.7.2.4 Checking C++ Source Syntax (-Ssyntax Option)

The -Ssyntax option disables invoking of all the components of the
C++ compiler except the preprocessor and the front-end compilator.

2.7.3 C++ Compiler Options
The most options of nmcc are actually the options for one or several
SDK components. Detailed description of SDK component options is
presented in corresponding sections of this manual.

Further follows short description of the C++ Compiler options. There is
brief description for each option, the format and the list of components in
whose command line this option may be found.

2.7.3.1 Creating Debug Information (-g Option)

The -g option causes the compiler components to generate symbolic
directives for use with the NeuroMatrix® NM6403 C++ source
debugger.

It is used without additional arguments.

The -g option is used by:

• the front-end compilator;

• the code generator;

• the assembler.

When nmcc meets the -g option, it automatically passes -d1 to the
linker. For more information about the –d1 option, refer to Section 4.8.2
on page 4-16.

2.7.3.2 Adding Directories for Header Files and Libraries Search (-I and -L Options)

The -Idir option adds dir to the list of directories to be searched for
#include files. The options can be used several times to define several
directories. The -Idir option is used by:

• the preprocessor;

• the assembler.

It allows the components to search the following:

• C++ header files;

• Macro libraries.

The directory name should not be separated from the option, for
example:

-ID:\NEURO\INCLUDE

CC++++ CCoommppiilleerr

2-11Programmer’s Reference
Version 1.0

The -Ldir option adds dir to the list of directories to be searched for
libraries. The options can be used several times to define several
directories. The nmcc shell passes the -Ldir option to the linker.

The directory name should not be separated from the option, for
example:

-ID:\NEURO\LIB

2.7.3.3 Front-end Compilator Options (-Xargument Options)

The -X allows the user to set various options for the front-end
compilator.

Table 2-5. The Front-end Compilator Options
PARAMETERS DESCRIPTION

-Xinline=n This front-end compilator option defines the processing mode of
inline functions defined by the user. If n is equal to 1 the front-
end compilator will build in the code for those functions instead
of function call. Otherwise, the calls of inline functions will be
processed as usual calls.

Default value: -Xinline=1.
-Xexcep=n This front-end compilator option defines the C++ exception

generation mode. If n is equal to 1 the front-end compilator
supports exceptions. Otherwise, the code of exception support is
not generated. The use of this key makes sense only in case the
user program does not use the exceptions. In this case, additional
code for stack unwinding will not be generated. If n is equal to 0
but the C++ source code contains the throw-expression the
compiler will return an error message.

Default value: -Xexcep=1.
-Xrtti=n

This option tells the front-end compilator to support mechanism
of runtime type information (RTTI). If n is equal to 1 the front-
end compilator generates such structures. Otherwise, no data for
the RTTI support is generated. The use of this option makes
sense only in case when the user program uses RTTI in C++
programs. It should be noted that not all expressions typeid
and dynamic_cast require the generation of RTTI data. If n is
equal to 0 but the C++ source code contains the RTTI data the
compiler will return an error message.

Default value: -Xrtti=0.
-Xold=n

This option tells the front-end compilator to support some old
regulations of ANSI C, canceled by ANSI C++. If n is equal to 1
the old restrictions are supported. This option permits implicit
transformation from arithmetic types to enumerators (enum
types) and an implicit transformation of void to an arbitrary
type. The option is helpful while compiling the ANSI C code

CC++++ CCoommppiilleerr

2-12 Programmer’s Reference
Version 1.0

with the compiler.

Default value: -Xold = 0.

2.7.3.4 Preprocessor Options (-D, -U, -T, -C Options)
Table 2-6. The Preprocessor Options

PARAMETERS DESCRIPTION

-Dname[=def] This option predefines name for the preprocessor. This is
equivalent to inserting #define name def at the top of each
C++ source file. If optional def is omitted, -Dname equal to 1.
Examples:
-DDEBUG

-UDEBUG

-DVER=100
-Uname This option undefines the predefined constant name. Overrides

any –D option for name.
-T This option sets the C++ identifier identification mode. If the

option is set the identifiers names are compared by the first eight
symbols. Otherwise, the names are compared by all symbols.
The option does not require any additional arguments.

-C This option allows preserving comments when processing C++
source files by the preprocessor. It does not require any
additional arguments.

2.7.4 Assembler Options
This subsection contains short description of some assembler options.
For more information about the assembler options, refer to Chapter 3.

2.7.4.1 Generating an Assembly Listing File (-l Option)

The –l (lowcase “L”) option invokes the assembler with –l option to
produce an assembly listing file. If the option is set up, the file .lst will
be produced for every assembly source file, listed in nmcc command
line, and for every assembly source file generated by the C++ compiler.

2.7.4.2 Generating a Cross-Reference Listing File (-x Option)

The –x option invokes the assembler with –x option to produce a
symbolic cross-reference in the listing file. If the option is set up, the file
.crf will be produced for every assembly source file, listed in nmcc
command line, and for every assembly source file generated by the C++
compiler.

CC++++ CCoommppiilleerr

2-13Programmer’s Reference
Version 1.0

2.7.5 Linker Options
This subsection short description of some linker options. For more
information about the linker options, refer to Chapter 4.

2.7.5.1 Defining Output File Name (-o Option)

The –ofilename.ext option names the output file. If the user does not
want to employ the –o option, the linker creates an output file with the
name of the first file met in the command line. For example, in case
nmcc MyApp.cpp Filter.asm Mask.elf

the output file name will be MyApp.abs. If the order is changed, the out
file name will be changed, too. For example, in case
nmcc Filter.asm MyApp.cpp Mask.elf

the output file name will be Filter.abs.

If the user defines the output file name, the order is ignored, for example:
nmcc MyApp.cpp Filter.asm Mask.elf –oMask.abs

In this case, the output file name will be Mask.abs.

If output file extension is not specified it will be defined by the linker
and will depend on the output file type.

Table 2-7. Default Extensions for Linker Output Files
EXTENSION DESCRIPTION
.abs Absolute executable files.
.rel Relocatable executable files.
.elz Object files.

2.7.5.2 Supplying a Memory Configuration File Name (-c Option)

The –cfilename option provides the linker with a memory
configuration file name.

For more information about this option, refer to Section 4.11 on page 4-
25.

2.7.5.3 Generating a Memory Map File (-m Option)

The –mfilename option tells the linker to generate a memory
configuration file.

For more information about this option, refer to Section 4.8.9 on page 4-
20.

2.7.5.4 Supplying a Linker Command File Name (- @ Option)

A command file is an alternative technique of setting the linker options
and input filenames. The command file can be used to set up default or
common options and filenames. Using the command file is especially

CC++++ CCoommppiilleerr

2-14 Programmer’s Reference
Version 1.0

convenient when nmcc is run consecutive times with the same set of
options or/and input files.

The name of the command file should follow immediately after the -@
option:
-@filename

The preceded hyphen is set only in case -@ is the nmcc shell option. The
same linker option is used without the hyphen. For more information,
refer to Section 4.6.6 on page 4-12.

2.8 The nmcc Default Configuration

2.8.1 List of Components Default Options
The following default options and/or filenames are set for the
correspondent compiler components every time the user runs nmcc:

• -F (exclude /usr/include path from the #include search path) and
-DNM6403 (define NM6403 macro, which defines the target processor).
These are the default options for the preprocessor,

• -q (suppress progress messages) for the code generator, assembler and
for the linker,

• -I%NEURO%\include for the preprocessor and for the assembler. The
pathnames are directories that contain #include files and assembler
macro libraries,

• -l%NEURO%\lib for the linker. The pathnames are directories that
contain object libraries,

• libc.lib – C runtime library containing the processor startup code. This
file is added to a command line if at least one C++ source file name is
specified. In case nmcc creates an output file from only assembly
source files, the library is not added.

2.8.2 Default Output File Name
In case when compilation and the assembly of an application task
consisting of several files are realized, and in this case the name of the
output file is not indicated, the following default convention is operative:

The name of the output file coincides with the name of the first in list file
being compiled, and the extension corresponds to the type of the output
file, e.g. the result of successful compilation:
nmcc aaa.cpp bbb.cpp ccc.cpp

will be file aaa.abs.

The default result of the compilation is the absolute executable file
(extension .abs).

CC++++ CCoommppiilleerr

2-15Programmer’s Reference
Version 1.0

The linker determines all conventions described in this point and used by
default since this is it that completes the compilation stage. For more
detailed information about default values, refer to Section 2.8 on page 2-
14.

2.9 Example of Invoking nmcc
This example demonstrates the process of assembling the absolute file
from two initial files:

>nmcc t2.cpp templ.cpp -otempl.abs

"templ.cpp", line 5: (warning): return type for ‘main’ to integer type

>

File t2.cpp is the first one in the command line. However, the output
file with the aid of key -o is named after the main file of the project:
templ.abs. The library of execution time C++ is used for assembling
the output file, the library is connected automatically on condition that
the variable of environment NEURO is set.

The warning was issued by the front-end compilator since the type of
function main in file templ.cpp was described as void that does not
conform to the requirements of the new standard of C++ language.

It is possible to see what components were invoked by nmcc:

> nmcc t2.cpp templ.cpp -otempl.abs -Snoexec

preproc -F -DNM6403 "-IC:/NEURO/include" t2.cpp C:/WINDOWS/TEMP/t2.cc

c0 -o C:/WINDOWS/TEMP/t2.ic C:/WINDOWS/TEMP/t2.cc

preproc -F -DNM6403 "-IC:/NEURO/include" templ.cpp C:/WINDOWS/TEMP/templ.cc

c0 -o C:/WINDOWS/TEMP/templ.ic C:/WINDOWS/TEMP/templ.cc

codegen -q C:/WINDOWS/TEMP/t2.ic -oC:/WINDOWS/TEMP/t2.asm

codegen -q C:/WINDOWS/TEMP/templ.ic -oC:/WINDOWS/TEMP/templ.asm

asm -q "-IC:/NEURO/include" C:/WINDOWS/TEMP/t2.asm -ot2.elf

asm -q "-IC:/NEURO/include" C:/WINDOWS/TEMP/templ.asm -otempl.elf

linker -q -otempl.abs "-lC:/NEURO/lib" t2.elf templ.elf libc.lib

It is obvious that the nmcc has made a substitute for the NEURO variable
environment; standard files of headers (.h) and standard macro-libraries
are located on the disc in catalogues substituted automatically. It is also
obvious what intermediate files are created in the course of components
operation.
t2.cc t2.ic t2.asm templ.cc templ.ic templ.asm

CC++++ CCoommppiilleerr

2-16 Programmer’s Reference
Version 1.0

Since the parameter -Stmp was not found in the command line, the nmcc
shell has removed all these files on completion of the work. Only object
and absolute files remained (the linker creates absolute executable files
by default):
t2.elf, templ.elf and templ.abs

2.10 The nmcc Shell Error Messages
During the operation of nmcc erroneous situations may arise. If an error
appeared in the course of the work of some component, the component
itself will issue the message of this error. In this case nmcc ceases further
work and completes with the result 1.

Error message may be generated by nmcc itself.

The nmcc shell messages are, as a rule, the result of an error in the
parameters of its call. All nmcc messages start with prefix " cc : "

The nmcc shell generates the following messages:

"Unrecognised option '<used_name>'"

The nmcc shell was called with a key unknown to it (all nmcc options are
preceded by hyphen).

"Unrecognised input file <used_name>'"

The nmcc shell was called with a file type unknown to it (known types of
files:.c .cpp .asm .elf .elz .lib).

"Multiple source files forbids implicit specification of list file name."

The name of listing file was indicated simultaneously with the indication
of some initial files .c, .cpp and .asm. When starting with many initial
files it is forbidden to use key -l with a name indicated. However, the -l
option may be used without an additional argument, in this case for each
assembler file (initial or created as a result of compilation of file C++) the
listing file with a name is created, the name formed from its name by
replacing the extension by .lst.

"Multiple source files forbids implicit specification of cross-ref file name."

The reason is the same as with the previous error. -x can be used without
an additional argument. Extension .crf. is used for the files of cross-
references created in this case.

CC++++ CCoommppiilleerr

2-17Programmer’s Reference
Version 1.0

"No such environment variable: <used_name>"

A non-existing environment variable was used in the command line of the
nmcc call. Used name of the variable is displayed.

"Unexpected environment variable substitution error"

An unclear error has occurred while substituting the values of the
environment variables. Under the normal operation of the nmcc and at
normal condition of the system this error cannot appear. In case of its
appearance, one should apply to programmers with a detailed description
of conditions at which this error has occurred.

2.11 Characteristics of NM6403 C++
This section contains information about the aspects of compiler
realization and the system library of supporting C++ language that have
been defined in the standard of C++ language, as defined by realization.

2.11.1 Standard Data Types
By virtue of the architecture of processor NM6403 and of the set of
supported commands of memory access all standard elements of the data
are expressed in 32- or 64-bit words depending on the number of bits
required for their presentation.

In the processor a 32-bits word is least accessible, therefore, regardless of
the fact that type char or short can be presented by 8 or 16 bits
respectively, they occupy 32 bits in the memory.

Base types of the data of C++ language are presented in the Table, as
well as their size in 32-bits words and the alignment of the data type in
the memory:

Table 2-8. NM6403 C++ Data Size
BASE TYPES

OF DATA
SIZE QUANTITY OF

SIGNIFICANT
BITS

ALIGNMENT OF
DATA TYPE IN

MEMORY

char 32 bits 8 bits 1

short 32 bits 16 bits 1

int 32 bits 32 bits 1

long 64 bits 64 bits 2

indicators 32 bits 32 bits 1

float 32 bits 32 bits 1

double 64 bits 64 bits 2

long double 64 bits 64 bits 2

CC++++ CCoommppiilleerr

2-18 Programmer’s Reference
Version 1.0

Term «Alignment of data type in memory» is used to emphasize those
variables occupying 64 bits cannot be arranged by memory odd addresses
(see Figure 2-3). Therefore, if two variables are located alongside each
other, one of which is 32 bits in size and lies in the memory at an even
address and the variable following it is 64 bits, an unused space is
located between these two variables which are 32 bits in size.

Figure 2-3. Alignment of Data Types in Memory

Address

even odd even
64 bits 32 bits 32 bits

Variable В Blank space Variable А

2.11.2 Identifiers and Character Set
An identifier may have any length, however compiler C++ ignores
symbols after the 256th (the standard requires not less than 31 symbols).
All the symbols up to 256th one are significant.

Set of symbols found in the initial program is essentially a 7-bit ASCII
set. In the comments all symbols from the 8-bit ASCII Table can be
found.

Uppercase and lowercase letters are distinguished for internal and
external identifiers.

2.11.3 Data Types Range (limits.h and float.h)
Two header files are defined in the standard of ANSI C++ language:
limits.h and float.h, that describe the ranges of meanings of
constants defined by the data types.

The standard also defines the minimum size and availability/absence of a
sign bit for the data types being described.

The minimum size of a variable which is not a bit field, is equal to 32
bits:
CHAR_BIT 32

The maximum number of bytes in a multibyte symbol:
MB_LEN_MAX 1

For the following integer-valued numeric ranges the medium column
contains the numerical presentation of a limit being defined and the right
column reflects its bit presentation in a hexadecimal format.

SYMBOLIC
DESIGNATION

LIMIT VALUE BIT PRESENTATION

CHAR_MAX 255 0xFF

CC++++ CCoommppiilleerr

2-19Programmer’s Reference
Version 1.0

CHAR_MIN 0 0х00

SCHAR_MAX 127 0х7F

SCHAR_MIN -128 0x80

UCHAR_MAX 255 0xFF

SHRT_MAX 32767 0х7FFF

SHRT_MIN -32768 0x8000

USHRT_MAX 65535 0xFFFF

INT_MAX 2147483647 0x7FFFFFFF

INT_MIN -2147483648 0x80000000

LONG_MAX 9223372036854775807 0x7FFFFFFFFFFFFFFF

LONG_MIN –9223372036854775808 0x8000000000000000

ULONG_MIN 184467440737709551616 0xFFFFFFFFFFFFFFFF

CC++++ CCoommppiilleerr

2-20 Programmer’s Reference
Version 1.0

Programmer’s Reference
Version 1.0

3 Assembler

3.1 INTRODUCTION ..3-2
3.2 ABOUT ASSEMBLER ...3-2
3.3 ASSEMBLER DEVELOPMENT FLOW ...3-2
3.4 INVOKING THE ASSEMBLER ..3-3
3.5 ASSEMBLER OPTIONS SUMMARY..3-4
3.6 GENERAL OPTIONS..3-6
3.6.1 Printing Out Reference Information (-h, -? Options) ...3-6
3.6.2 Disabling Output Information (-q and -i Options) ..3-7
3.6.3 Printing Out the Banner (-t Option) ...3-7
3.6.4 Displaying the Assembler Pathname (-p Option)..3-7

3.7 OUTPUT FILE TYPES ..3-7
3.7.1 Setting the Output File (-ofilename Option) ..3-8
3.7.2 Creating an Assembly Listing File (-I Option) ...3-8
3.7.3 Creating a Cross-References File (-х Option)...3-9

3.8 MACRO LIBRARIAN MODE...3-9
3.8.1 How to Use the Assembler as the Macro Librarian (-m[macrolib] Option)...................... 3-9
3.8.2 Adding Macros to a Macro Library (-a Option)..3-10

3.9 CONTROLLING THE ASSEMBLER WARNING MESSAGES..3-10
3.9.1 Controlling Warnings Output by Their Numbers (-W[+|-]<num> Option)3-10
3.9.2 Controlling Group of Warnings (-W[+|-]group Option)...3-11

3.10 ERROR MESSAGES ..3-11
3.10.1 Warnings... 3-12
3.10.2 Errors .. 3-18
3.10.3 Internal and Fatal Errors ...3-26

Programmer’s Reference
Version 1.0

3.1 Introduction
This chapter contains information about NM6403 assembler. It contains the
data about the interface of the compiler, command line options, modes of
operation and about assembler error and warning messages.

3.2 About Assembler
Assembler for NM6403 - is a one-pass compiler translating a program
written in assembly language into an ELF object file. The assembler does
not resolve internal references and does not resolve undefined external
symbols. Its main task is to construct a Table of symbols and to conduct
transformation of assembler lines into processor instructions.

The assembler allows to create the libraries of macros and to add new
macros into already existing libraries.

3.3 Assembler Development Flow
The assembler processes files in assembler language received from three
sources:

• files generated by compiler C++;

• files in assembler language developed manually;

• macro libraries generated by the assembler itself during the preceding
sessions of operation.

A result of assembler operation can be either an object file or a macro
library.

The above input and output data of the assembler define its place in the
structure of NM6403 SDK.

Position of the assembler within the general path of obtaining a program
being executed from various types of input data is not shown.

AAsssseemmbblleerr

3-3Programmer’s Reference
Version 1.0

Figure 3-1. Assembly Language Development Flow

Assembler

C++ Compiler

C++ Source
Files

Assembler
Source

ELF Object
Librarian

Assembler

ELF Object
Files

Linker

Executable ELF
Object Files

Processor
NeuroMatrix®NM6403

NM6403 Simulator
Family

Handmade
Assembly Source Files

Results of
Execution

Debugging

Macro
Libraries

Macro
Source Files

ELF Object
Libraries

3.4 Invoking the Assembler

asm [options] [input file]

asm Name of file containing assembler executable
code for NM6403.

input file Input file containing the program in assembler
language.

options Assembler parameters (with prefix «-»). They can
be arranged in an arbitrary place of a command
line and in arbitrary sequence. (More details are
discussed below).

AAsssseemmbblleerr

3-4 Programmer’s Reference
Version 1.0

Non-compulsory parameters are put into square brackets.

If there is no input file indicated or no parameter is set, the assembler will
not realize any actions but will only display the message about its own
name, version and copyright.

In the end of the work, the assembler, being a return code, returns the total
quantity of errors in the text of the initial program, if any, or 0 in case of
their absence.

3.5 Assembler Options Summary
To control the assembler operation a set of parameters (keys) is used.

All parameters are preceded with prefix «-».

They should be indicated in a command line.

The sequence of parameter arrangement is of no importance. Parameters are
divided among themselves with spaces.

Presented below are the Tables of the assembler parameters.
Table 3-1. General Options

PARAMETERS DESCRIPTION

-q The assembler does not issue any messages on the work process
except error messages

-i The assembler does not issue any messages on its work
-h or -? The assembler displays short information on call parameters.
-t The assembler displays its title defining its full name, version and

copyright data.
-p At the beginning of its work the assembler displays its full name

containing the path to a catalogue where it is located.
-Imacrolib Indicates a catalogue where the macros libraries should be searched.

Parameters -p, -t -h, -? are reference parameters and therefore cannot be
used simultaneously. If they appear at the same time the assembler issues an
error and informs that only one of the parameters can be used as an input
one.

For example, if the -t option is set up:

asm -t

the output message is displayed as follows:

Assembler for NM6403 1.32.(с)RC Module 1996-1999. All rights reserved

AAsssseemmbblleerr

3-5Programmer’s Reference
Version 1.0

Whereas with the simultaneous appearance of any other parameter alongside
it in the command line

For example, when calling the assembler with parameters:

asm -t -h, or asm -t -q

the display will show:

Invoke error ASM702: -p,-h,-? or -t must stand alone

Table 3-2. Output Filenames

PARAMETERS DESCRIPTION

-ofilename Name of the output file of a component is preset. If an option is
not preset, the output file name coincides with the input file
name. If the option is preset, the output file receives the name:
filename.

-l Generates file with the program listing.
-x Creates file with a list of cross-references.

Table 3-3. Macro Librarian Mode Options

PARAMETERS DESCRIPTION

-m[macrolib] With the appearance of this parameter in the command line,
the assembler jumps to the macro-librarian mode. Name
macrolib indicates a library name. By default, it coincides
with the input file name that is complemented with extension
.mlb.

-a This parameter provides the addition of macros contained in
the input file to the macro-library whose name is defined
with a previous key.

Note In case among the keys of the command line supplied to the assembler
input there are parameters of transition to the macro-librarian mode, no
object file is generated.

Table 3-4. Handling Output Messages
PARAMETERS DESCRIPTION

-W[+|-]num This parameter enables/disables the display of an individual
message by its number.

-W[+|-]group This parameter, combined with the abbreviation defining
various groups of messages, enables prohibition /
permission to display the messages of the preset group.

AAsssseemmbblleerr

3-6 Programmer’s Reference
Version 1.0

3.6 General Options
Related to general-purpose parameters are those that have the same meaning
and execute similar actions for the most of the SDK components of
processor NM6403.

3.6.1 Printing Out Reference Information (-h, -? Options)
When starting the assembler with parameter -h, or -? reference information
is displayed on all the keys defining the assembler behavior and the result of
its work. The display will show the following:

Figure 3-2. The Assembler Reference Information
rogram usage: asm [-[i|q]plxda] [-I<>] [-o<>] [-m<>] [-W<>] in_file

in_file - input asm file name

ommon switches:
-q - disable program header message.
-i - force to produce no messages (include -q switch).
-I<macrodir> - set path for the macro libraries.
-p - print out assembler location.
-t - print out assembler header.
-h,-? - print out this help page.
Each of the -p,-t,-h,-? switch can't be combined with other switches.

utput production switches:
-o<out_file> - specify output file name;
 if omitted, out_file assigns to <in_file> with extension
 changed to '.elf'.

 -l - generate listing file named <out_file> with extension
 changed to '.lst'.
 -x - generate cross-reference file named <out_file> with
 extension changed to '.crf'.
 Output switches can't be used with macro liblarian switches.

Macro librarian switches:
 -m[<macrolib>] - turn on librarian mode;
 if <macrolib> omitted, filename.mlb will be created.
 No elf file will be generated.
 -a - append to library. Library file must exist.
 Macro liblarian switches can't be used with output switches.

Debug switches:
 -d - turn on verbose syntax parsing

Warning control switches:
 -W[+|-]<num> - enable/disable warning number <num>;
 if sign omitted, warning is disabled.
 -W[+|-]<group> - enable/disable entire <group> of warnings;
 legal groups are
 all - all warnings,
 debug - warnings issued by the debug commands,
 object - object generating warnings (e.g. unused label),
 compile - all translation warnings,
 librarian - librarian warnings.

With the appearance of -h or -? in the command line the assembler work is
completed, input file is not created.

AAsssseemmbblleerr

3-7Programmer’s Reference
Version 1.0

3.6.2 Disabling Output Information (-q and -i Options)
Depending on parameter the assembler produces information in the
following way:

• In case of absence of keys -q or -i the assembler delivers to a user all the
information generated, namely, title header, warnings, error messages.

• In case of -q the user only obtains information on errors and warnings.
This mode is often used during a package start of the assembler or at
calling from the integrated environment.

• In case of -i the assembler produces nothing, i.e. in this mode of
assembler operation even error messages are suppressed.

3.6.3 Printing Out the Banner (-t Option)
Parameter -t is of exceptionally informative nature. It is used for getting
information on the name of a given SDK component, on version number
and on copyright. With the appearance of this key in the command line, the
assembler issues an information message:

Assembler for NM6403 1.32.(с)RC Module 1996-1999. All rights reserved

and completes the work. The assembler work is completed without creating
an output file.

3.6.4 Displaying the Assembler Pathname (-p Option)
Parameter -p is of purely informative nature. It is used for searching the
location of an assembler called. Often a situation arises that a user does not
know where a program is called from. It is only obvious that this is one of
catalogues from the list of general-access catalogues in file autoexec.bat
(PATH=...). In this situation, key -p can be used. The assembler, when
faced by this key in the command line, will send the following message to
the display:
D:\NEURO\BIN\ASM.EXE,

and complete the work. No output file is created.

3.7 Output File Types
Depending on keys used as input parameters the assembler generates the
following types of output parameters:

• .elf - object file;

• .lst - file-listing of initial text;

• .crf - file with a list of cross-references;

• .mlb - macro-library.

AAsssseemmbblleerr

3-8 Programmer’s Reference
Version 1.0

3.7.1 Setting the Output File (-ofilename Option)
The result of the assembler work in translation mode is an output object file.
Its name is defined by means of setting a key -ofilename in the command
line. Between key -o and the file name there should be no space. The file
name stands for a full name i.e. the full path to the file. If only a name is
preset and the path is omitted the file will be created in the current
catalogue. If a file with this name existed already in this directory, it will be
replaced by a new one without any additional warnings.

If the assembler is not encountered by a key defining the name of an output
file, the file name is used with the addition of extension .elf, and this
becomes the name of the output file.

3.7.2 Creating an Assembly Listing File (-I Option)
With the appearance of key -l among the input parameters of the assembler
an output file is generated that contains the program listing. It has extension
.lst.

The listing file is created additionally to the object file and it keeps
reference information on the following:

• shift relative to segment beginning;

• code image of each command;

• lines of the program initial text.

A small fragment of the program listing is given as an illustration:
Figure 3-3. Fragment of an Assembly Listing File

 * begin ".text"

 * <_Mirror>

 *

00000000 4e000000 ffffffff * nb1 = 0FFFFFFFFh; // Neuron boundaries

00000002 4e400000 ffffffff * sb = 0FFFFFFFFh; // Sinaps boundaries

 *

00000004 3fe40000 * push ar4, gr4;

00000005 3fe10000 * push ar1, gr1;

00000006 3fe20000 * push ar2, gr2;

 *

00000007 50100000

00000008 47d40000 fffffff8 * ar4 = ar7 - 8;

offset machine code assembly source code

AAsssseemmbblleerr

3-9Programmer’s Reference
Version 1.0

3.7.3 Creating a Cross-References File (-х Option)
When adding parameter -x to the assembler calling command line a file
with cross-references is formed. It has extension .crf and is generated
additionally to the object file.

The cross-reference file contains the list of symbols and their definitions in
the format as follows:

• symbol name;

• its meaning;

• line number in the file with initial text where it is defined;

• line numbers of the initial text where references to this symbol are
available.

For illustration, we herein present a small fragment of a cross-reference file.
Figure 3-4. Fragment of a Cross-Reference File

****** List of sections ******

Section Name Size

 .values 200

 .bss.values 0

 .text 70

****** List of objects ******

Object Name Type Bind Defined in Offset
_Mirror LABEL Global .text 0

Matrix0 VAR Local .values 0

Matrix VAR Local .values 100

3.8 Macro Librarian Mode
Apart from its main function of translating assembly source files into object
files, the assembler allows to operate in the mode of a macro-librarian. In
this case, instead of an object file it generates a macro-library where all the
macros found in the input assembler program are collected.

3.8.1 How to Use the Assembler as the Macro Librarian (-m[macrolib] Option)
Parameter -m transfers the assembler to the macro-librarian mode. In this
case, the input file undergoes a syntax check-up, this followed by
transferring macros contained in it to a special intermediate presentation and
are entered to the output file.

Parameter -m can be used both with an additional parameter and without it.
The additional parameter contains the file name where the macro-library
will be written. There should be no space between -m and file name.

AAsssseemmbblleerr

3-10 Programmer’s Reference
Version 1.0

If the file name is absent, a file whose name coincides with that of the input
assembler file and the extension is - .mlb, will be used as a macro-library.

If parameter -m is used without additional parameter -a (see below), a new
file is created. If a file with this name already exists it will be replaced by
the new one without any additional warning messages.

3.8.2 Adding Macros to a Macro Library (-a Option)
Parameter –a is used to show that macros found in the input file should be
added to the already existing macro-library.

Thus, if only key -m, is used, the macro-library is created anew regardless
of the fact if a file with this name had existed. If a pair of keys -m -a is
used, the macros will be added to the existing library.

Note In case a combination of keys -m -a, is used but the macro-library in this
case does not exist, an error will be displayed. This is done to avoid
generation of erroneous libraries. Normally, user, when using key -a,
bears in mind that the library is kept on the disc. If it is not found, it is
most likely that a path was indicated wrongly.

3.9 Controlling the Assembler Warning Messages
The assembler has developed possibilities of control of warnings. All
warnings are divided into several groups related to various nodes of
operation or types of data processed. The division by groups is shown below
in Subsection 3.9.2 on page 3-11.

3.9.1 Controlling Warnings Output by Their Numbers (-W[+|-]<num> Option)
Parameter -W that is followed by a warning number provides
enabling/disabling a warning with a preset number.

If sign "+" is set, a warning, in case of its appearance, is displayed.

With sign "-" set, a warning is ignored and not displayed.

For example, there is an error in the program in the assembler language, this
error probably does not lead to wrong program operation:
aaa: word = 8080808080808080h;

The error consists in that a 64-bit constant is assigned to a variable declared
as a 32-bit word.

When compiling an assembler file containing a given line a message will be
displayed as follows:

Assembler for NM6403 v1.32. (c) RC Module Inc. 1996-1999. All rights reserved.

"mirror.asm",19 : Warning ASM003: Initializer too big, truncated

AAsssseemmbblleerr

3-11Programmer’s Reference
Version 1.0

The same will happen if parameter -W+3 will be added to the command line.
However, if parameter -W-3 will be used as an input parameter the message
will be ignored and will not appear on the screen.

By default, all warnings are in active state (+) except for a warning with
number ASM200, for it -W-200 is set.

3.9.2 Controlling Group of Warnings (-W[+|-]group Option)
Parameter -W in combination with abbreviation defining various groups of
messages allows to control the display of messages.

All warnings displayed in the course of assembler work can be divided into
groups as follows:

• all - all warnings of assembler;

• debug - all warnings generated when processing debugging information;

• object - all warnings generated when creating assembler objects such as
unused marks;

• compile - warnings arising in the course of code generation;

• librarian - warnings generated by the assembler in the macro-librarian
operation mode.

The description relating to types of messages making particular groups is
presented in subsection 3.10.1 on page 3-12.

Example:

All the warnings but one can be disabled in the following way:
asm.exe mytest.asm -W-<all> -W+3

Note Actions of W-parameters depend on priorities of their appearance in the
command line, i.e. a parameter next in turn cancels a previous one. For
example, sequence -W-<all> -W+3 disables all the warnings except
the third one whereas sequence -W+3 -W-<all> disables all
warnings including number 3 warning with as well.

3.10 Error Messages
In the course of operation the assembler may issue three types of messages:

• warnings;

• errors;

• internal and fatal errors.

AAsssseemmbblleerr

3-12 Programmer’s Reference
Version 1.0

With the appearance of warnings the work of the assembler is not ceased
since the problems arising in this situation still make possible to generate an
object code, though, probably, operating wrongly.

In case of appearance of any type of error no output file is generated since
either there is no possibility for code generation, or the generated code will
be known to be wrong and impossible for implementation. Errors are
divided into usual ones, connected with wrong program writing, and fatal,
when a program, even free of errors, cannot be compiled because, for
instance, a file with macro-libraries is not available, or there is a shortage of
disc space.

To send a message to the display the assembler uses a formatted line. Its
format is unified for the entire set of the SDK and looks as follows:

"file_name", [line_number] error_type error_number: error_message.

Line number is not indicated for internal and fatal errors.

Three figures are allocated for error number, i.e. it lies within an interval
between 0 and 999. Among error types numbers are distributed in the way
as follows:
Table 2-1 Ranges of numbers for various types of messages.

ERROR NUMBERS DESCRIPTION

0 – 399 Warnings.

400 – 799 Errors.

800 – 949 Internal errors.

950 - 999 Fatal errors.

Presented below is a list of messages issued by the assembler when various
types of erroneous situations occur.

3.10.1 Warnings
Messages of this type indicate to the probable availability of logical or
semantic inaccuracies available in a program processed. The display of this
message does not affect the correctness of output files formed by the
assembler.

Compilation messages (group compile).

ASM001 "Section name in construction end differs from a name when
opening :"

A section in the assembler is always put in special brackets.
Opening brackets are set by pseudocommands: .begin, .data,

AAsssseemmbblleerr

3-13Programmer’s Reference
Version 1.0

.nobits. After the opening bracket a section name is located.
Pseudocommand .end. is used as a bracket closing the
section. After it the section name should be located as well.
It should coincide with the name when opening. If section
names with opening and closing brackets do not coincide,
this warning arises (disciplinary construction). In case of
mismatching the closing bracket section name is ignored.

 ASM002 "Use pseudofunctions 'float' or 'double'"

 Variables of float or double type are presented in the
processor memory in IEEE 754 format. The Assembler
translates automatically constants of 1.5 или 2.7Е-3 type to
a required form. However, to provide for a correct
translation it is necessary to use pseudofunctions float or
double, which, being recognized by the assembler, would be
transformed as required. In other words, a correct record of
the constants with floating point looks as follows: float(1.5)
or double(2.7E-3). Otherwise the constants of this type will
be replaced by zero constants.

 ASM003 "Value of initialization constant is to great, truncated"

 Such a message usually appears when trying to initialize a
32-bits variable by a 64-bit constant. After truncating only
the junior portion of the constant remains, the senior one is
ignored, for example: 0123456789ABCDEFhl ->
89ABCDEFh.

ASM004 "Value of initialization constant is too small, extended"

 This message usually appears when trying to initialize a 64-
bits variable by a 32-bit constant. Extension takes place due
to zero filling of the constant senior portion, for example :
12345678h -> 0000000012345678hl.

ASM005 "Pseudofunctions loword/hiword cannot be applied to

address expressions"

 Capacity of address expressions does not exceed 32 bits
whereas pseudofunctions loword/hiword are intended for
access to the junior/senior portion of a 64-bits word
respectively.

ASM006 "Name of a macros in construction end differs from the

name when opening :"

AAsssseemmbblleerr

3-14 Programmer’s Reference
Version 1.0

 Macros in assembler are always put in special brackets .end.
Opening brackets are always set by a pseudocommand:
.macro. After the opening bracket macros name is located.
Pseudocommand .end is used as a bracket closing the
section. It should coincide with the name when opening. If
there is no coincidence between the macros names at
opening and closing brackets this warning appears (a
disciplinary construct). In case of mismatching the macros
name at the closing bracket is ignored.

 ASM100 "To receive a correct result the result register should not

coincide with registers of multiplier and multiplicand"

 For a multiplying operation executed hardwarily a
requirement exists according to which the operation result
cannot be written neither to a register where the multiplicand
was located, nor to a register where the multiplier was
contained (see Description of assembler language for
NM6403). The message warns that the multiplying will be
executed incorrectly.

ASM101 "Multiplying operation, when executing, uses the result

register, by default we substitute gr0"

 If the product register at multiplying was not indicated, for
example, there is an entry in the assembler program line:
gr2*:gr7, the result by default will be saved in register gr0.

ASM102 "Only 1 is permissible, we use 1"

 In assembler language there are some constructs where only
«one» can be used, for instance: gr2 = gr0 - 1. A constant
cannot participate in scalar or vector arithmetic operations.
And a record of gr0 - 1 type is considered not as an
operation with a constant but as the unary arithmetic
operation of the general-purpose register modification and
corresponds to a certain processor instruction. If a different
number is erroneously substituted to such construct it is
automatically replaced by 1.

ASM103 "Only register gr7 can be a multiplier, we use gr7"

 At multiplying operation executed hardwarily there is a
requirement according to which a multiplier should always
be in register gr7. If in a command being processed instead
of gr7 some other register is located it will be replaced by

AAsssseemmbblleerr

3-15Programmer’s Reference
Version 1.0

gr7.

ASM104 "Only 0 is acceptable, we use 0"

 In assembler language there are some constructs where only
0 can be used, for example vector constructs where 0 comes
as a zero operand: with 0 + data. In this case zero is a sign
that a zero vector is automatically generated in the
processor, this vector allows to pass data to afifo without
changes. If another number is erroneously substituted to
such construct, it automatically replaced by 0.

Messages of debugging information (group debug).

ASM200 "The second argument is not used"

 This message is disabled by default. It can be issued when
analyzing the debugging information of DWARF format,
when instead of one required parameter two parameters are
supplied to the pseudocommand. In this case the second
parameter is ignored.

ASM201 "Index cie should coincide with an ordinal number of a

given '.debug_frame_cie'"

 The message arises at the mismatching of index cie with the
ordinal number of the debugging pseudocommand
.debug_frame_cie.

ASM202

"The directory index should coincide with the ordinal
number of the debugging pseudocommand
'.debug_source_directory'"

 The message arises at the mismatching of the catalogue
index with the ordinal number of the debugging
pseudocommand .debug_source_directory.

ASM203 "The file index should coincide with the ordinal number of

command '.debug_source_file'"

 The message arises at the mismatching of the file index with
the ordinal number of the debugging pseudocommand
.debug_source_file.

ASM204 "In this version command '.debug_macro_def' is not

AAsssseemmbblleerr

3-16 Programmer’s Reference
Version 1.0

realized, we skip it"

 Support of debugging information for macroses in this SDK
version is not realized.

ASM205 "In this version command '.debug_macro_undef' is not

realized, we skip it"

 Support of debugging information for macroses in this SDK
version is not realized.

ASM206 "In this version command'.debug_macro_start_file' is not

realized, we skip"

 Support of debugging information for macroses in this SDK
version is not realized.

ASM207 "In this version command '.debug_macro_end_file' is not

realizes, we skip"

 Support of debugging information for macroses in this SDK
version is not realized.

ASM208 "Attribute identifier should be a number"

 Symbolic information is used as an attribute identifier.

ASM209 "Attribute value should be an address"

 Wrong type of the debugging pseudocommand parameter.

ASM210 "Abstract command should consist of three elements"

 Pseudocommand structure is preset wrongly.

ASM211 "Only one '.debug_root_die' is possible"

 More than one pseudo command is found in the program text
.debug_root_die. The second and subsequent pseudo
commands .debug_root_die are ignored.

ASM212 "Sequence of commands '.debug_*die*' should start with

'.debug_root_die'"

 Pseudo command .debug_root_die, that defines the
beginning of commands sequence .debug_*die*. is

AAsssseemmbblleerr

3-17Programmer’s Reference
Version 1.0

absent.

ASM213 "Тег die should a number"

 Тег die is probably defined as a symbolic constant.

ASM214 "The first argument of operation should be an address"

 The first argument of pseudocommand is of a type differing
from an address.

ASM215 "Both arguments should be numbers"

 One or both arguments of the pseudocommand are defined
as symbolic constants.

ASM216 "Operation code should be a number"

 Symbolic expression is used as an operation code.

ASM217 "Both operation code and two arguments should be

numbers"

 Symbolic expression is used as an operation and/or
argument code.

ASM218 "Wrong number of arguments"

 The number of arguments in the line exceeds the required
one or falls short of it.

ASM219 "Wrong type of arguments"

 Data of wrong type are supplied as an argument.

ASM220 "Sequences '.debug_line' cannot be embeddded"

 Pseudooperation sequences describing numbers of initial
text lines cannot be embedded.

ASM221 "In the first '.debug_line' index of initial file should be

indicated"

 The first pseudooperation .debug_line, describing the
number of line should store the index of initial file where it

AAsssseemmbblleerr

3-18 Programmer’s Reference
Version 1.0

takes place.

ASM222 "Command '.debug_start_sequence' is omitted."

 Pseudocommands of sequence processing are found though
the initial pseudocommand .debug_start_sequence was not
preset.

ASM223 "Bytes of the block should be numbers"

 Probably, bytes preset by symbolic constants were found in
the block structure.

Messages of object file composition (group object)

ASM300 "Unused label"

 A label was declared in the program in assembler language,
however no reference to it was found, therefore it will be
ignored.

ASM301 "Generation of debugging information is impossible"

 This warning appears in place where the first error is found
at parsing the debugging information. Starting from this
place the generation of the object code will continue,
however all debugging information will be ignored.

Messages of macro-librarian (group librarian)

ASM350 "Macros already exists, we skip :"

 The macros with this name already exists in the
macrolibrary, therefore a newly found macros will be
skipped.

3.10.2 Errors
This type of messages is an indication of some error in a file processed. This
error does not cause immediate stoppage of the assembler operation but in
case of appearance of this category of messages output files are not
generated.
ASM400 "Too long constant"

AAsssseemmbblleerr

3-19Programmer’s Reference
Version 1.0

 This error appears in case a declared constant does not go
into 64 bits.

ASM401 "Wrong format of decimal number"
 Wrong format of decimal number means that it comprises

symbols not belonging to digit series 0-9.

ASM402 "Wrong format of binary number"
 Wrong format of binary number means that it comprises

symbols differing from 0 and 1.

ASM403 "Wrong format of octal number"
 Wrong format of octal number means that it comprises

symbols not belonging to digit series 0-7.

ASM404 "Wrong format of hexadecimal number"
 Wrong format of decimal number means that it comprises

symbols not belonging to digit series 0-9, and not
corresponding to letters A, B, C, D, E, F.

ASM405 "Impermissible symbol"
 Impermissible symbol in assembler language implies a

symbol not belonging to the following subset of symbols:
lowercase and uppercase Latin letters, decimal numbers and
also symbols as follows:

 . , / \ : ; " ’ ` [] - + = & ! < > () * { } _.

ASM406 "Impermissible condition"
 An impermissible condition in assembler language means

the following:

if after symbols u> without space there is any other symbol
except =. That is, there should be u>=.

if after symbols <> without space there is any other symbol
except 0. That is, there should be: <>0.

ASM407 "After quoting operation there should be an identifier"
 Symbol '`' (reverse1 apostrophe) can be used in assembler

AAsssseemmbblleerr

3-20 Programmer’s Reference
Version 1.0

language only in quoting operations, i.e. when a user wants
to use an auxiliary word as an identifier; it must be
necessarily preceded by symbol '`'. If there is a space
between a given symbol and identifier or the identifier is
absent, this error occurs.

ASM408 "Line terminators do not coincide"
 If a line is put in double quotation-marks the assembler is

right to expect that since a sign of opening quotation-marks
" was found, closing double quotation-marks should appear
before the end of the line. If the closing quotation-marks are
not found or single quotation-marks are found instead of
them, this error occurs.

ASM409 "Wrong declaration of a variable"
 This error arises if a variable is declared outside some

program section and at the same time it is not a variable of
common or extern type.

ASM410 "Wrong initialization"
 This error occurs when the assembler discovers an attempt

of initializing a variable of common or extern type.
Variables of these types cannot be initialized by virtue of
their nature.

ASM411 "Wrong type of variable - WORD is supposed"
 .

ASM412 "Wrong declaration of structure"
 This error arises when the name of the structure defined

alongside an opening bracket struct does not coincide
with the name at a closing bracket end, for instance:

struct AAA

 A: word;

 B: long;

end AA;

ASM413 "Structure field is not found"

AAsssseemmbblleerr

3-21Programmer’s Reference
Version 1.0

 This error arises when trying to appeal to the non-existing
field of a structure used, for example:

ar0 = offset(AAA, C);,

though structure AAA only has fields A and B.

ASM415 "Wrong use of word OWN"
 This error appears when using key word «own» outside the

macros body that is impermissible since this word is used for
labels declared only inside the macros.

ASM416 "Wrong name of library"
 This error occurs in the case when after key word «import»

the name of macro-library is not preset or the name of non-
existing library is preset.

ASM417 "Wrong size of array"
 The reason for this error is wrong determination of the array

size when it is defined as equal to zero or to a negative
number.

ASM418 "Wrong counter in duplicator"
 This error occurs when zero or a negative number is an

argument of a duplicator dup defining the quantity of pattern
repetitions, for instance: 80808080h dup -10.

ASM419 "Wrong array index"
 This error arises when trying to get access to the outside of

the array borders. The error can be found only at an obvious
setting of the array element index. For example, if the access
to the array element is preset in a marked line with index -1
or 100 and, at the same time, correct values of the indexes
are within the range from 0 to 99.

AAsssseemmbblleerr

3-22 Programmer’s Reference
Version 1.0

ASM422 "Wrong register pair"
 When a register pair is used, for instance, for reading a 64-

bits word from the memory, the address register and the
general-purpose register should have similar indexes ar0, gr0
or [ar3+=gr3].

ASM423 "Wrong constant expression"
 Regulation of composing a constant expression is violated.

The assembler is unable to calculate it, consequently, it
issues an error.

ASM424 "Using '.endif' without '.if'"
 Pseudocommands '.endif' and '.if' should always be found in

pairs '. Absence of '.if' with '.endif' available causes
erroneous situation.

ASM425 "Recursive use of '.repeat'"
 The assembler does not tolerate embedded pseudocommands

.repeat.

 ASM426 "Wrong method of addressing"
 Non-existing method of addressing was used. The list of

addressing methods being used is given in document
Software NeuroMatrix® NM6403. Description of
assembler language

ASM427 "Address registers from various groups"
 Address registers from various groups cannot be used in this

assembler instruction. Registers ar0 - ar3 compose one
group, registers ar4 - ar7 - the second one. See more details
in Software NeuroMatrix® NM6403. Description of
assembler language.

ASM428 "Assignment register should be an address register"
 This error arises at an attempt to use an address register for

executing arithmetic operations, for instance: gr4 = ar5+gr5.
Such operation is impossible, instead of it the operation of
address register modification can be used: ar4 = ar5+gr5.

AAsssseemmbblleerr

3-23Programmer’s Reference
Version 1.0

ASM429 "Wrong operand of a shift command"
 This error arises when a shift operator is preset improperly,

e.g. in operations of cyclic shift a number differing from 1 is
used as a shift value.

ASM430 "Shift through carry should be executed to one unit only"
 This error appears when the size of a shift in shift operations

through flag carry is set improperly when a number other
than 1 is used as a shift value.

ASM431 "It should be a number"
 In a repeat counter defined by pseudocommand .repeat. the

quantity of repetitions is preset by a constant digital value.,
for instance repeat 32 or .repeat 100. The same relates to the
repeat counter used in vector commands whose range of
values is within 1-32.

ASM432 "Counter is not within the range of (1-32)"
 The vector command repeat counter should be within the

range from 1 to 32. This range is defined by the depth of
queues FIFO and by the vector processor internal structure.

ASM433 "Syntax error"
 Most widely spread error that informs that in a line where it

occurred a syntax construct exists that cannot be processed
by the assembler.

ASM434 "Redefining a label"
 A label defined in a given line had been previously defined

in another place, e.g. above in the text. This error may also
occur when a label is used in a macros before which key
word own is missing. .

ASM435 "Recursive use of macros"
 The assembler tolerates the embeddedness of macroses

i.e.when in the body of one macros a call of another one is
contained and so on. However, if in this call chain the name
of a macros already mentioned is found, an error will be
generated since this assembler version does not support

AAsssseemmbblleerr

3-24 Programmer’s Reference
Version 1.0

recurrent macros calling.

ASM436 "Quantity of parameters does not coincide in a macros call"
 When developing a macros a programmer defines a number

of parameters transferred to him. If, while calling the
macros, the number of parameters does not correspond to
what was defined during the development, this error appears.

ASM437 "Repeated definition"
 Repeated definition of identifier is found in this line.

ASM438 "Wrong type of a field"
 Internal error

ASM439 "Wrong type of a variable"
 Internal error.

ASM440 "Undefined label"
 If in the program a transfer to a label is found that, though

declared, remained undefined, this error is generated.
Syntactically the label definition looks as follows:
<MyLabel>.

ASM441 "Initialization of a variable in section .nobits"
 Section .nobits is entered into the assembler with the

purpose of saving non-initialized variables. If an
initialization is found in this type of section, an error arises.
The variable being initialized should be transferred to a
section of a corresponding type.

ASM442 "Repeated use of an identifier"
 This error arises when trying to declare a local variable that

has a name which coincides with the name of a variable
declared before.

ASM443 "Improper field definition"
 .

AAsssseemmbblleerr

3-25Programmer’s Reference
Version 1.0

 ASM444 "Macros redefinition"
 In this line a macros is being defined whose name coincides

with a macros already defined before.

ASM445 "Undefined macros"
 In this line macros is called whose definition location has

not been found. Probably the macros is defined in another
file. Use command import<file_name>, where a file name is
substituted that defines a macros sought for.

ASM446 "Undefined constant"
 A constant that was not previously defined is used in this

line.

ASM447 "Undefined variable"
 A variable that was not previously defined is used in this

line.

ASM448 "A label should not be of ‘common’ type"
 Error arises in case key word common is found that cannot

be used with labels but with variables only.

ASM449 "Improper format of a number with floating point"
 Only several record formats of real numbers are supported

that are as follows:

float(5.6)- single accuracy real number,

float(123.00e12)- floating-point number (32 bits),

double(123.00e12)- long floating-point number (64 bits).

ASM450 "Undefined die :"
 Error is related to the fact that die, used when recording

debugging information commands, has not been defined
previously.

ASM451 " ‘;’is lost after .endrepeat"

AAsssseemmbblleerr

3-26 Programmer’s Reference
Version 1.0

" ‘;’ is lost after .endif"
 Symbol ‘;’ is often lost after pseudocommands

.endrepeat, or .endif. This error is a reminder.

3.10.3 Internal and Fatal Errors
The message of internal error testifies to an internal failure of the assembler
that is followed by an immediate stoppage of the assembler operation. When
such an error arises do not fail to apply to the assembler program builders
(see section «How to execute notes and suggestions» in «Foreword».)

The message of a fatal error is an indication of a serious error that appeared
in the course of assembler operation. After displaying such message the
assembler completes the operation by emergency. Even in case when a file
being compiled does not contain syntax and semantic errors, a fatal error
may arise. It may, for example, be related to the shortage of disc space or
memory.
ASM950 "Cannot open a file :"
 Probably, the file carries a flag read-only, or is used by

another application.

ASM951 "Error of stack of lexical analyzer"
 The stack of the lexical analyzer has turned out to be

overfilled due to the area shortage in the main storage in the
course of compilation. Increase of the main storage is
required.

 ASM952 "Memory shortage"
 Memory shortage on the disc and in the main storage

required for compiling a particular file.

ASM953 "Internal error"
 With the appearance of this error apply to the SDK

programmers (see section «How to execute notes and
suggestions» in Preface.

Programmer’s Reference
Version 1.0

4 Linker

4.1 INTRODUCTION ..4-3
4.2 LINKER OVERVIEW...4-3
4.2.1 Main Features... 4-4
4.2.2 Adjustment to Various Memory Configurations...4-4
4.2.3 Output File Types ... 4-4
4.2.4 Linker Return Value .. 4-5

4.3 LINKER DEVELOPMENT FLOW...4-5
4.4 INVOKING THE LINKER..4-6
4.5 LINKER OPTIONS SUMMARY ...4-7
4.6 GENERAL OPTIONS..4-9
4.6.1 Printing Out Reference Information (-h, -? Options) ...4-9
4.6.2 Suppressing Progress Information (-q[n][=filename] Option)..4-10
4.6.3 Displaying the Banner (-t Option)..4-11
4.6.4 Printing Out the Linker’s Location (-p Option)...4-11
4.6.5 Setting Output File Name (-ofilename Option)..4-11
4.6.6 Using a Command File (@filename Option) ...4-12

4.7 OUTPUT FILE TYPES DESCRIPTION...4-13
4.7.1 Creating an Absolute Executable File (-abs or -a Option) ..4-14
4.7.2 Creating a Relocatable Executable File (-rel или -r Option) ...4-14
4.7.3 Creating an Object File (-elf or -e Option)...4-15

4.8 SPECIFIC OPTIONS ..4-16
4.8.1 Removing an Unused Sections and Debug Information (-d4 Option)........................... 4-16
4.8.2 Keeping Debug Information (-d{1..3} Option)..4-16
4.8.3 Keeping All Data in an Optput File (-d0 Option)..4-17
4.8.4 Defining Memoty Heap Size (-heap и -heap1 Options) ..4-17
4.8.5 Defining System Stack Size (-stack=size Option)..4-18
4.8.6 Defining the Entry Point (-start=label Option) ...4-18
4.8.7 Disabling Initialization of Static Global Objects (-asm Option)...................................... 4-19
4.8.8 Defining Library Search Path (-l (lowercase "L") Option)..4-20
4.8.9 Name the Memory Map File (-mfilename Option)...4-20
4.8.10 Supplying the Configuration File Name (key -c<file_name>)...................................... 4-22
4.8.11 Setting the Default Segment Address (-addr=address Option)4-22

4.9 DEFAULT OPTIONS ..4-22
4.10 CORRECT AND INCORRECT OPTION COMBINATIONS..4-23
4.11 CONFIGURATION FILE...4-25
4.11.1 MEMORY Section...4-26

4.11.1.1 Reserved Names for Memory Banks..4-27
4.11.1.2 Memory Default Pattern ..4-27

4.11.2 SEGMENTS Section...4-27
4.11.2.1 Distribution of Segments Within the Limits of Memory Bank..4-29

LLiinnkkeerr

4-2 Programmer’s Reference
Version 1.0

4.11.3 SECTIONS Section .. 4-29
4.11.3.1 How to Name Data Sections .. 4-32

4.12 AN EXAMPLE OF USING THE LINKER ... 4-32
4.13 LINKER ERROR MESSAGES .. 4-34
4.13.1 Warnings... 4-35
4.13.2 Errors .. 4-36
4.13.3 Fatal Errors ... 4-40

LLiinnkkeerr

4-3Programmer’s Reference
Version 1.0

4.1 Introduction
This chapter describes the linker interface, its input control parameters
and various modes of operation. It presents detailed information on each
key, the default key set used at the linker start-up, the data on work
organization with the aid of the command file.

The chapter contains the description of the configuration structure of the
file that makes possible to control the arrangement of various parts of a
program being executed in the processor storage at arbitrary versions of
the physical memory configurations.

A full list of errors displayed in the course of the linker operation is
presented as well as the reasons for their appearance and methods of
eliminating them.

Apart from this, the chapter comprises the examples of operation with the
linker starting from the command file and configuration file creation and
up to the analysis of the obtained memory map file.

4.2 Linker Overview

The linker for NeuroMatrix® NM6403 is a console application
Windows95/NT.

The linker is oriented to operation with the files of ELF format only. It
fully supports this format with the exception of creation and processing
of dynamic libraries. However, the linker is intended for processing
object files for processor NeuroMatrix® NM6403 only since the ELF
format does not specify the algorithms of relocation calculations. This
algorithm is machine-dependent i.e. is specially defined for each
processor type and depends on its data dimension and on the addressing
methods supported by it.

The linker commands some optimization capabilities. His optimization is
only related to the optimization of the size of object files. A special
algorithm embedded in it makes possible to remove sections and symbols
unused by the program, to replace references to local symbols by
references to sections origins where they are defined. That makes it
possible to reduce the volume of the program code and, thus, the time of
processing it.

Means of self-control are nested into the linker. At the appearance of a
failure situation it sends the diagnostics to the computer screen or to a
file transferred as a parameter. Along with user errors the linker also
informs an application programmer of internal errors that might occur
during the operation. In case of appearance of an internal error it is
necessary to apply to linker program builders and to transfer them the
files where in the course of work the error occurred and also the data on
the combination of input parameters.

LLiinnkkeerr

4-4 Programmer’s Reference
Version 1.0

4.2.1 Main Features
When processing the input object data the linker implements functions as
follows:

• integrates sections with similar names and creates for them their own
relocation tables required for the readjustment of references for a
certain memory configuration of a computation device;

• in the course of constructing executable files that are adjusted for a
certain configuration of a computation device, it calculates the
addresses of symbols and sections, adjusts all references stored in the
relocation tables;

• combines the sections into program segments for accelerating and
simplifying loading a program into the computer memory;

• resolves undefined external references among input files;

• removes sections and symbols not used by a program from the output
file and also removes debugging information;

• delivers information on errors found in the course of linkage editing.

4.2.2 Adjustment to Various Memory Configurations
The linker supports various versions of computer memory configuration.
For this purpose a C-like language has been developed with the aid of
which in a special file, named a configuration file, ranges of operating
addresses accessible to the processor are described, the addresses of
program segments loading are set, the distribution of sections being
loaded among the segments, their relative location. This language
contains three main directives MEMORY, SECTIONS and SEGMENTS
that make possible to form the data for the linker, enabling it to correctly
adjust addresses and references in an executable file. For more details see
Section 4.11 on page 4-25.

4.2.3 Output File Types
The linker allows creating three types of output files of ELF format:

• absolute executable file - is essentially a set of program segments.
Each segment is an image of a certain bucket of the processor
memory. It has the loading address, the size of the bucket being
imaged and the sequence of codes that should be placed in a particular
memory area. And all references to symbols are replaced by the
absolute addresses of these symbols;

• executable relocatable file - differs from the absolute executable file
in that for it there are no previously set addresses of location in the
processor memory. The address of each section is defined only at the
stage of program loading, therefore in a file considered the concept of
a segment being loaded is absent. Each loaded section has its own
relocation table and all references to code symbols and slots are

LLiinnkkeerr

4-5Programmer’s Reference
Version 1.0

resolved at the moment of loading to the processor when the address
of memory location for the section is already defined. Therefore the
relocatable executable file, in contrast to an absolute one, contains the
table of symbols and tables of relocations;

• object file - is a result of combining input files. It contains an
integrated table of symbols, generalized sections, recalculated
relocation tables. An object file, in contrast to an executable one, may
comprise undefined symbols.

4.2.4 Linker Return Value
The linker, in case of successful work termination, issues a
corresponding message and returns the value 0. If an error took place in
the course of linker operation a message of error appears on the screen
and the linker operation is completed as under abnormal conditions with
a returned value of 1 or more, depending on the quantity of errors
detected.

4.3 Linker Development Flow
Figure 4-1 illustrates the role of the linker in the course of developing
application programs for processor NeuroMatrix® NM6403. The linker
processes several types of input files including object files, libraries,
command and configuration files. The linker creates an absolute
executable file or an executable relocatable file intended for loading into
the processor memory or into the program emulator.

LLiinnkkeerr

4-6 Programmer’s Reference
Version 1.0

Figure 4-1. Linker Development Flow

Assembler

C++ Compiler

C++ Source
Files

Assembler
Source

ELF Object
Librarian

Assembler

ELF Object
Files

Linker

Executable ELF
Object Files

Processor
NeuroMatrix®NM6403

NM6403 Simulator
Family

Handmade
Assembly Source Files

Results of
Execution

Debugging

Macro
Libraries

Macro
Source Files

ELF Object
Libraries

4.4 Invoking the Linker
To invoke the linker, enter

linker [options] filenames [options]

linker Name of file containing the executable code of
linker

filenames Input object files and libraries. Can be arranged in
arbitrary order. Extension in the file name is of no
importance. The linker defines object files by a
magic number. By the same number single object
files differ from libraries.

LLiinnkkeerr

4-7Programmer’s Reference
Version 1.0

options parameters of linker control (with prefix "-"). Can
be arranged in any place of a command line, in
arbitrary sequence. (More detailed discussion is
presented below).

There are two ways of starting the linker

• Linker start-up with the setting of parameters and file names in the
command line. The next example contains the linker call for editing
the linkage of two object files file1.elf и file2.elf. As a result of the
linker work an absolute executable file will be produced. Parameter -о
establishes the name of the output file result.abs.

 linker file1.obj file2.obj -oresult.abs;

• The linker starts-up with indication of the command file containing the
parameters and names of input object files. The command file is
essentially a textual file whose each line contains one or several
parameters of the linker. To instruct the linker that the parameters
should be taken from the command file, parameter "@file" is added to
the command line where file - is the command file name. The
command file may look as follows:

-oresult.abs

file1.elf

file2.elf

In this case the start of the linker with the command file in the quality of
an input parameter will look in the following way:
linker @file.cmd

The command file is a convenient form of recording the input parameters
of the linker. It is especially necessary when the linker needs to bring
together a great quantity of object files, and the command line is not
capable of enclosing all input data. For example, the command file may
look as follows:
file1.elf file2.elf

And the linker start-up in this case will look in the following way:

linker @file.cmd -oresult.abs, or
linker -oresult.abs @file.cmd

4.5 Linker Options Summary
To control the work of the linker a set of parameters (keys) is used

All parameters start with symbol "-".

In parameter names uppercase and lowercase letters are
distinguished.

LLiinnkkeerr

4-8 Programmer’s Reference
Version 1.0

They can be indicated in a command line or command file. The sequence
where the parameters are arranged is of no significance. The parameters
are separated among themselves by spaces. If an argument follows a
parameter it is recorded without space, for instance -оfile.abs. Otherwise
the linker will perceive the given name as the name of an input object file
and, being unable to find it or trying to open, will display an error. In this
event the linker operation will end as under abnormal conditions.

Presented below is a summary table of the parameters of linker control:
Table 4-1. Linker Genertal Options

OPTIONS DESCRIPTION

-h, -? Reference data issuing
-q[n][=filename] Silence mode. n = 0..2. Depending on n, delivered to the flow

is all information, error messages only or nothing. If the file name
is indicated, the information will be reentered to it.

-t Issuing the linker header, information on the version.
-p Issuing the complete path of its own.
-ofilename Presetting the name of the output file (if there is no extension it is

defined in accordance with the type of the output file).
@filename Presetting the command file name.

Table 4-2. Output File Fypes

OPTIONS DESCRIPTION

-abs or –a Absolute executable file.

-rel or –r Executable relocatable file.

-elf or –e Object file.

Table 4-3. Specific Options

OPTIONS DESCRIPTION

-cfilename Assignment of configuration file.
-mfilename Creating memory map of an absolute executable file.
-lpathname Path to the catalogue of library files.
-d0 Ban on deleting unused sections.
-d1..3 Saving debugging information in the mode of unused sections

deleting.
-d4 Deleting all debugging information and unused sections.
-heap=size Size of a heap in a local storage (Kwords)
-heap1=size Size of a heap in a global storage (Kwords)

LLiinnkkeerr

4-9Programmer’s Reference
Version 1.0

-stack=size Size of a stack (Kwords)
-start=entrypoint Point of input to the program.
-asm Enabling the initialization of static global variables in C++

language.
-addr=address Default address of the segment being created in absence of the

configuration file.

4.6 General Options
Related to the general options are the keys having similar meanings and
executing similar actions for the most of NM6403 SDK components.

4.6.1 Printing Out Reference Information (-h, -? Options)
When starting the linker without input parameters or with parameter -h,
or -? reference information on all the keys defining the linker behavior
and the result of its work is sent to the monitor screen. The information
displayed on the screen is as follows:

LLiinnkkeerr

4-10 Programmer’s Reference
Version 1.0

Figure 4-2. The Linker Reference Information

Linker for NeuroMatrix NM6403 * v1.07 * (c)1996-99 * RC Module.

Usage: nlink [options] <file1> ... <fileN>

Options:

-abs (-a) - absolute file for output

-rel (-r) - movable file for output

-elf (-e) - object file for output

-o<filename> - name of output file

-c<filename> - name of config file

-m<filename> - name of map file

-start=<name> - name of entry point

-stack=<size> - stack size

-heap=<size> - local heap size

-heap1=<size> - global heap size

-d<n> - 'cleaning level'; n = 0..4

 0 - don't remove anything

 1 - mark DEBUG-sections before analysis

 2 - standard, then mark all DEBUG-sections

 3 - standard, then copy InUse value from base sections

 4 - standard algorithm (maximum removing)

 When <n> is omitted, 4 assumed

 Default is also 4 (full clear)

-asm - to process file generated via assembler (not C)

-q[n][=filename] - set up linker diagnostic; n = 0..2

 0 - all information

 1 - only error messages

 2 - silence

 if <filename> specified redirect output

-addr=<address> - default segment address definition

With the appearance of key -h or -? in the command line the work of
the linker is completed before editing regardless of the availability of
other parameters. Output file in this case is not created.

4.6.2 Suppressing Progress Information (-q[n][=filename] Option)
Depending on parameter n the linker issues information in the way as
follows:

• in the case n = 0 the linker delivers to the user all generated
information, namely, a title header, warnings, error messages,

LLiinnkkeerr

4-11Programmer’s Reference
Version 1.0

• in the case n = 1 the user only receives the information on errors and
warnings. This mode is often used at the linker package start or at the
call from an integrated environment,

• in the case n = 2 the linker does not issue anything, i.e. at the linker
operation in this mode even error messages are suppressed.

The case when n is absent is equivalent to n = 1 i.e. the record of
parameter -q or -q1 leads to a similar result.

If after key -q[n] through sign «equal» without space a file name is
preset, the linker creates the file with this name and sends all the
information to it. If a file with this name already exists a new file will be
recorded on top of the old one without any additional warning.

4.6.3 Displaying the Banner (-t Option)
Parameter -t is of exceptionally informative nature. It is used for getting
the data on the name of this SDK component, on the version number and
on the copyright. With the appearance of this key in a command line the
linker issues an information message:

Linker for NeuroMatrix® NM6403 *v1.0* (c)1996,98 * RC Module

and completes the work. The work of the linker will be completed
regardless of the availability of other parameters in the command line.
No output file is created.

4.6.4 Printing Out the Linker’s Location (-p Option)
Parameter -p is of purely informative nature. It is used for locating a
linker called. Often a situation arises that the user does not know where
the linker is being called from. It is only known that this is one of the
catalogues presented in the list of general-access catalogues in file
autoexec.bat (PATH=...). In this situation key -p can be used. The
linker, having found this option in the command line will display a
message, for instance:
I am located in C:\MODULE\NMCSDK\BIN\LINKER.EXE

and completes the work. The work of the linker will be completed
regardless of the availability of other parameters in the command line. No
output file is created.

4.6.5 Setting Output File Name (-ofilename Option)
Output file is the result of the linker operation. Its name is defined by
way of setting key -ofilename in the command line. Between -о and
the file name there should be no space. A full name is meant by the file
name, i.e. a full path to the file. If only the name is set and the path is
omitted, the file will be created in a current catalogue. If a file with such
name already existed in the given directory it will be replaced by a new
one without any additional warnings.

LLiinnkkeerr

4-12 Programmer’s Reference
Version 1.0

If the linker does not encounter in the command line a key defining the
name of an output file, the name of the first file from the input file list
will be used as a name of the output file. In this case the extension of the
new file will depend on what type of a file it is:

Table 4-4. The Linker Output File Extentions
EXTENSION DESCRIPTION

.abs For absolute executable files

.rel For executable relocatable files.

.elz For object files.

In the base NM6403 SDK the main extension for object files is ".elf".
However the linker assigns extension ".elz" to the output object file.
This is done to avoid replacement of the old (input) object file.

4.6.6 Using a Command File (@filename Option)
The command file is an alternative way of setting parameters to the
linker. When a great number of keys and file names is needed to be listed
in the command line, situation of overfilling often occurs since the length
of the command line is restricted by 128 symbols. Therefore it is more
convenient to arrange all the parameters in the command file and to
transfer its name, fitted with prefix @ as the command line parameter, to
the linker. There should be no space between sign @ and the name of the
command file. The command line in this case will look much easier. It
will approximately look as follows:
linker @cmdfile.cmd

All the parameters of the linker can be arranged in the command line
both each in individual lines and several parameters in one line. For
example, none of the records presented below will be erroneous:
-r

-d2 -stack=128

test1.elf -oresfile.rel

test2.elf test3.elf

It is convenient to place the constant part of the command line to the
command file and to set the rest, frequently changing parameters, in the
command line directly. For example, if there is a need to transfer the
following set of parameters to the linker as an input file:
-a -stack=4 -heap=1024 -heap1=1024 -d4 main.elf
test1a.elf test1b.elf rtl.lib,

and at the same time to trace the result of the linker operation for various
types of an output file and for different algorithms of unused sections
deleting. The work with such set of parameters can be organized in the
way as follows:

LLiinnkkeerr

4-13Programmer’s Reference
Version 1.0

• To place all the keys, not changeable during testing, to the command
file myfile.cmd. Then the command file may look as follows:
-stack=4 -heap=1024 -heap1=1024

main.elf test1a.elf

test1b.elf rtl.lib

• To write changeable parameters in the command line along with the
command file. Then the process of starting up the linker will be
reduced to the following:
linker -a @myfile.cmd -d4

At the same time there will be no need to rewrite each time the long
command line and be worried about the shortage of place in it for the
parameters that may add to the general list.

4.7 Output File Types Description
The linker works with object files of ELF format intended for execution
on processor NM6403. In the title of such files a field is located defining
a type of machine for which they have been created. In the given case
this field has a special meaning corresponding to the processor. With any
other meanings of this field the linker will issue a corresponding error
and cease the work.

The linker generates three types of output files:

• absolute executable file is intended for execution on processor
NM6403. It has the name «absolute» because for each structure
incorporated into it, an absolute (accurate) address of its location in the
memory accessible to the processor, is known. Its internal features are
structured in such a way that promotes the maximum acceleration and
simplification of a process of loading into the memory of a
computation device. The file is divided into special fields named
segments, each of them representing a dump of a certain field of the
computer memory. The loading of such file is reduced to copying the
segments by addresses preset in their headers.

• executable relocatable file is intended for execution on processor
NM6403. In contrast to the previous file type the addresses of loading
its structures are not known in advance and are defined only at the
moment of loading. Therefore a file of this type contains a table of
symbols and relocation tables for sections where references to the
symbols are found. All symbols from the symbol table should be
defined. That means that each symbol should contain information of a
section where a location was allotted for it. The layout of this type of
file in the computer memory is realized by a special loader that should
assign the addresses of section layout, calculate symbol addresses and
resolve all references located in the section relocation tables.

LLiinnkkeerr

4-14 Programmer’s Reference
Version 1.0

• object file is not intended for executing on a processor and is an
intermediate step in creating a program being implemented. The linker
allows to make one object file from several ones, a file that comprises
all input information. Such a file is intended for further assembling
with other object files. The linker realizes a set of internal conversions
of object files, therefore object files produced from under the
assembler cross-compiler will be changed and simplified, though they
still will remain object files. These changes are connected with the
resolution of individual types of references within sections and with
the replacement of the references to all local symbols by references to
the origin of sections where they have been defined.

In the course of creating executable files the linker, if a user wishes, may
enable the algorithm of the deletion of unused sections (see 4.8.1 on page
4-16). In the mode of object file creation this algorithm is not provided
for, and a corresponding warning is issued about it.

4.7.1 Creating an Absolute Executable File (-abs or -a Option)
Parameter -а instructs the linker that the output file should be represented
by an absolute executable file. This key is set by default, therefore if the
linker does not find an input parameter defining the type of an output file,
it will create an absolute file. An absolute file should necessarily contain
an input point. By default the input point is named "start". Normally it is
contained in the startup code and constitutes a global label. The user may
enter his name of an input point (see 3.8.6 Defining the name of an input
point (key -start=<label_name>) on p. 3-19.

The following examples bring together files file1.elf and
file2.elf, and create an absolute executable file:
linker -abs file1.elf file2.elf -oresult.abs

linker -a file1.elf file2.elf -oresult.abs

linker file1.elf file2.elf -oresult.abs

4.7.2 Creating a Relocatable Executable File (-rel или -r Option)
Parameter -r instructs the linker that the output file should be
represented by an executable relocatable file. To place this file in the
memory of a neuro-computer a special loader should be used that
receives from the user the computer memory map and the address of each
section loaded. The loader should compute the addresses of all symbols
and to resolve all references stored in the file of this type, to define an
input point. With this purpose the loader processes the symbol table and
relocation tables of corresponding sections. In contrast to an absolute file
wherein sections being loaded are combined into segments and are
loaded to the memory simultaneously, the load process of an executable
relocatable file requires each section to be processed individually.
However, relocatable files make possible to more flexibly organize the
load process depending on the contextual conditions of the program
operation.

LLiinnkkeerr

4-15Programmer’s Reference
Version 1.0

The following examples bring together files file1.elf and
file2.elf, and create an executable relocatable file:
linker -rel file1.elf file2.elf -oresult.rel

linker -r file1.elf file2.elf

4.7.3 Creating an Object File (-elf or -e Option)
Parameter -e instructs the linker that the output file should be represented
by an object file. The object file generated by the linker generalizes and
stores the information from input files. It realizes the following
conversions:

• bonds together sections of similar names. «Bonding» means adding an
input section next in turn to the end of an output section of the same
name; after that such sections are perceived as an integral whole. The
case in point is not all the sections contained in object files but only
those that store initialized and non-initialized data, program codes and
debugging information. Apart from these sections object files contain
auxiliary information on symbols, on references to symbols and on the
symbol names. The procedures of processing such information differ
from bonding. They will be described in paragraphs given below,

• creates a summary table of symbols. In so doing references to defined
external symbols are partially resolved. In contrast to the two
preceding types of files, object files may contain unresolved external
references,

• constructs relocation tables for those output sections that contain
references to symbols. It resolves a part of the references, namely,
relative references from the sections to symbols that are also defined in
these sections (such references often arise when using skip command
in programs in assembler language),

• replaces references to local symbols by references to the origin of the
sections in which these local symbols were defined. This allows to
unload the symbol table, to delete a great number of dead local
symbols that affects also the size of an output file.

In the mode of object file creation the linker enables the mode of dead
sections deletion.

It should be noted the mechanism of the merging of initialized and non-
initialized data sections has a number of peculiarities. If in various object
files brought together section of the same name are found, i.e. one
section contains initialized data and the second one - non-initialized,
their merging leads to the formation of the initialized data section. The
part that was not previously initialized is zeroed.

The following examples bring together files file1.elf и file2.elf,
and create an object file:

LLiinnkkeerr

4-16 Programmer’s Reference
Version 1.0

linker -elf file1.elf file2.elf -oresult.elf

linker -e file1.elf file2.elf -oresult.elf

4.8 Specific Options
Related to specific parameters of the linker is the set of keys not found in
other SDK components or having a different meaning there.

4.8.1 Removing an Unused Sections and Debug Information (-d4 Option)
When creating an output file the linker provides the user with a means
for excluding non-usable information from it. Such information includes
debugging information and sections for which there are no references
from other sections (except special auxiliary sections that are processed
separately).

The linker uses this mode by default when creating an executable file.
Another record of this mode, equivalent to it, is -d where a figure is not
indicated.

Complete removal of unnecessary information is possible only at
creating an absolute or relocatable executable file. On attempted
indication of this mode while creating an object file the linker ignores
key -d4 and issues a corresponding warning.

The following example brings together files file1.elf and
file2.elf, and creates an absolute executable file from where all dead
sections and symbols, including debugging information, are removed:
linker -d4 file1.elf file2.elf -oresult.abs

linker -d file1.elf file2.elf -oresult.abs

4.8.2 Keeping Debug Information (-d{1..3} Option)
Modes of partial preservation of the debugging information serve the
purpose of minimizing the output file output when there is a need to save
the debugging information. Under all these modes dead sections and the
debugging information sections coupled with them are partially removed
(should be removed at least).

These three modes differ in algorithms and they have appeared, mostly,
due to the lack of full clarity with regard to interrelations between the
sections of data and sections with debugging information. In further
versions, probably, only one mode of three will remain.

Similar to the full removal, partial removal of unnecessary information is
possible only at creating an absolute or relocatable executable file. On
attempted indication of this mode while creating an object file the linker
ignores key -d1..3 and issues a warning.

The next example creates an absolute executable file alone.abs, from
where all dead data sections are removed and from the section with

LLiinnkkeerr

4-17Programmer’s Reference
Version 1.0

debugging information only those are saved which refer to the remaining
data sections.
linker alone.elf -d3

4.8.3 Keeping All Data in an Optput File (-d0 Option)
Parameter -d0 is used when a user wishes to save in the output file all
information contained in input files, including that which, probably, does
not participate in the program.

The following example puts together files file1.elf and s, and creates
an absolute executable file saving all input information.
linker -d0 file1.elf file2.elf -oresult.abs

When creating object files this key is a default key and in addition the
only possible one among keys -d{0..4} since at this stage there is no
information on which data and code will be used in future and which will
be not.

When creating executable files key -d0 in certain cases may impede the
generation of an output file. This will occur in situations when in one or
several input modules given to the linker as parameters, undefined global
symbols are saved with no references made to them.

Let us, for example, consider a file in C++ language which contains the
declaration of a function as follows:
extern int MyUndefFunc();

However, there is not a single reference to it. Such a construct may cause
a warning of compiler C++, however it will get to the assembler file and,
through it, to the object one as well. When the linker begins to combine
this file with other ones for creating an executable file, it will find that
this label is not defined but there are no references to it. If any of the
keys -d{1..4} is used the symbol under consideration will be ignored
and will not get into the output file. However key -d0 stipulates that all
symbols and sections of input object files will be transferred to the output
file. The main property of the executable file is the absence of unresolved
external references. Therefore the linker will issue error «undefined
global symbol» and complete the work as under abnormal conditions.

4.8.4 Defining Memoty Heap Size (-heap и -heap1 Options)
Compiler C++ uses for processor NM6403 sections of non-initialized
data .heap (local heap) and .heap1 (global heap) for creating a
dynamic execution time heap used by function malloc(). With the aid
of keys -heap and -heap1 it is possible to define the heap size in a
global and local memory of a computer. The magnitude of the heap is
preset after sign «equal» and measured in 32-bits words:
linker -heap=0x40000 -heap1=0x100000,

allotted for local heap are 256K of words and for global one 1Mb of
words.

LLiinnkkeerr

4-18 Programmer’s Reference
Version 1.0

Between keys -heap and -heap1, sign "=" and the heap size there
should be no space.

By default the sizes of the local and global heaps are equal to 1K of
words. If the heap size is not preset by a user, the linker will issue a
reminder that only 1K of words are allocated for the heap.

The linker creates sections .heap and .heap1 only in case they are
available in input files, in particular, in the library for the work with
dynamic memory. In all other cases these keys are ignored.

The linker also creates global symbols __HEAP_SIZE and
__HEAP1_SIZE. They are assigned with meanings equal to the sizes of
local and global heaps of the execution time memory.

4.8.5 Defining System Stack Size (-stack=size Option)
For the work of programs on processor NM6403, function call, saving
registers and return addresses a stack is used. Stack is a section of non-
initialized data with name .stack, whose size is preset at the stage of
creating an executable file, i.e during linkage editing. The stack size is
preset with the aid of parameter -stack=size and measured in 32-bits
words.

The following example illustrates the process of stack defining (sections
.stack) measuring 4K of words:
linker -stack=0x1000

By default, the stack size is equal to 1K of words.

Between key -stack, sign "=" and the stack size there should be no
spaces.

If not indicated in an opposite way in the configuration file, section
.stack is isolated in the memory among other sections. However, to
increase fast-action it is recommended to place this section to a fastest
from accessible memories of the processor. The mechanism of sections
layout by predefined addresses is presented in the description of the
configuration file (see 3.11.3 Section SECTIONS on p. 3-29).

4.8.6 Defining the Entry Point (-start=label Option)
The memory address from where the program starts to be executed is
named an input point. When a loader places the program into a
computer memory, the command counter should be initialized, and the
address of the program origin should be written.

By default, when there is no input point name preset in the command
line, the linker thinks that it has name start. If the global symbol with
this name is not found in the symbol table or found but not defined, an
error "input point start is not defined" is issued to the user.

Key -start=label makes possible to preset its label name from where
the program is to be started. The label should be necessarily defined in

LLiinnkkeerr

4-19Programmer’s Reference
Version 1.0

one of the sections and have a global type of bonding. The linker
computes its address and saves it as the input point address.

The following example illustrates the process of defining a user input
point that is marked in the program by label BEGIN:
linker file1.elf file2.elf -start=BEGIN

Among key -start, sign "=" and label name there should be no space.

Usually the input point with name start is defined in the start-up code that
is preserved in the execution time library. When this library is connected
the start-up code in the process of linkage editing is automatically added
to the user program.

Note If a standard library is used and the input point is defined the standard
startup code will not be used and with the additional key presetting
-d{1..4} it can be removed from the executable file at all. Then the user
takes the responsibility on correct setting stack register ar7 when
starting the program and when processing the return from the program.

4.8.7 Disabling Initialization of Static Global Objects (-asm Option)
Parameter -asm permits the linker the disabling of static global objects
required for initialization in C++.

The following example puts together files file1.elf and file2.elf,
and creates an absolute executable file disabling the processing and
creation of specialized sections .init and .fini:
linker file1.elf file2.elf -asm -oresult.abs

If a user does not use the standard start-up code for starting the program
he may delete the said sections from the executable file. Since sections
.init и .fini are processed in a special way, they cannot be deleted
by means of using key -d{1..4}, this is why a special key -asm is
entered.

The start-up code contains two function calls:
call ctor;

call dtor;

They are called respectively before and after the function __main - the
main function of the user program. Labels ctor and dtor are defined at
the beginning of sections .init и .fini. If in the program static global
objects were found whose fields need to be initialized, in section .init
и .fini the calls of corresponding functions of initializing and
removing these functions are added. If there are no fields that need to be
initialized before the function __main functions ctor and dtor contain
only return instructions.

LLiinnkkeerr

4-20 Programmer’s Reference
Version 1.0

If a user uses his input point and his program is written in assembler and
does not require early initialization of static fields, he may use this key
and delete sections .init и .fini from the executable file.

4.8.8 Defining Library Search Path (-l (lowercase "L") Option)
Parameter -l presets the path to the catalogue of library files. If during
the assembly of the executable file the linker has found an undefined
global symbol to which a reference exists, then, to define this symbol, it
scans the libraries that are presented in the command line and contained
in the catalogue indicated by a user with the aid of key -l.

If a user wishes to connect a library that is located not in the current
catalogue, he may add its full name to the command line or indicate a
catalogue where it is located by means of key -l.

The following example puts together files file1.elf and file2.elf, and
realizes the retrieval of undefined global symbols in the library
mylib.lib, located in catalogue c:\lib:
linker file1.elf file2.elf mylib.lib -lc:\lib -oresult.abs

There should be no spaces between key -l and the path to the catalogue
of libraries.

The linker realizes the retrieval of libraries in the following order:

• considers libraries whose names are preset in the command line;

• realizes search of libraries with preset names in a current catalogue;

• scans catalogues preset by key -l in the same sequence in which they
are listed in the command line or command file.

If a user wishes to preset several catalogues for searching libraries he
should enter parameter -l to each catalogue:

linker file1.elf file2.elf mylib.lib -lc:\rtl -lc:\lib -oresult.abs

Note Each library consists of a certain number of object files. If a symbol
sought-for is defined in a given library, this means that it is defined in
one of object files being part of the library. Therefore only this file will be
loaded by the linker for further processing. If it contains much outside
information with no relation to defining a symbol considered, it will be
deleted from the final executable file if key -d{1..4} is available.

4.8.9 Name the Memory Map File (-mfilename Option)
Parameter -m presets the file name where the linker will write down the
information on memory distribution map for a given output file. The
memory map is created only for absolute executable files. It describes the
following:

LLiinnkkeerr

4-21Programmer’s Reference
Version 1.0

• distribution of processor NM6403 memory (addresses and sizes of
banks);

• position of segments in memory banks,

• distribution of output sections by segments,

• position of input sections in output sections,

• absolute addresses of all global symbols.

The map file contains the name of the output file and the input point.

In addition it comprises the following tables:

• Table describing the addresses and sizes of processor memory banks,
sizes of the memory page of each bank,

• Table describing the distribution of segments by memory banks. Each
segment has several attributes: attribution to the memory bank,
absolute address of origin and size,

• Table describing the distribution of sections by segments. Ech section
has several attributes such as an attribution to a segment, absolute
address of origin and size.

• Apart from this the table comprises information on input sections, on
output components, namely, to what input file a particular section
belongs and on its size.

• Table describing names and addresses of all global symbols of the
program.

The following example brings together files file1.elf and
file2.elf, creates an absolute executable file and makes a memory
map for it saving it in file mapfile.map:
linker file1.elf file2.elf -mmapfile.map -oresult.abs

There should be no space between key -m and the name of memory file
map.

The name of the memory file map is put in case it differs from the output
file name. By default the name of the file map coincides with the name of
the output file but has extension ".map". Therefore, the same example
but with the default name of the file map will look as follows:
linker file1.elf file2.elf -m -oresult.abs

and the resulted memory file map will have name result.map.

LLiinnkkeerr

4-22 Programmer’s Reference
Version 1.0

4.8.10 Supplying the Configuration File Name (key -c<file_name>)
Parameter -c defines the name of configuration file for creating an
absolute executable file. The configuration file contains all information
required for the correct layout of the program in the processor memory.
More detailed description of the configuration file is presented in section
3.11 Configuration file on p. 3-24.

The following example brings together files file1.elf and
file2.elf, creates an absolute executable file and uses for it the
configuration file cfgfile.cfg:
linker file1.elf file2.elf -ccfgfile.cfg -oresult.abs

There should be no space between key -c and the name of the
configuration file. The configuration file is used only for creating the
absolute executable file.

If during the creation of the absolute file key -c with the configuration
file name is not set, the linker creates an output file with the only
program segment, whose origin address is equal to 0x00000000 and the
size is not limited. The limitless size of the segment means that it
encloses all the sections loaded with consideration for the requirements
on their alignment. To change a segment address key -addr described
below should be used.

4.8.11 Setting the Default Segment Address (-addr=address Option)
In the mode of creating an absolute executable file, when the
configuration file is not preset, the linker creates a unified data and code
segment which comprises all sections loaded found by the linker in the
input files. To preset the location address of this segment in the processor
memory key -addr=address is used. The absolute segment origin
address written in hexadecimal form is entered into field «address», for
example:
linker file1.elf file2.elf -addr=0x00000080;

linker file1.elf file2.elf -addr=0x80000080;

4.9 Default Options
When starting the linker with the set of input object files the following
default input parameters are set:

Table 4-5. Linker Default Options
OPTION STATUS DESCRIPTION

-а Set As a result of linker operation an absolute
executable file will be created.

-d4 Set All debugging data and unused sections and
symbols are deleted.

-heap=0x400 Set/Not set Initial size of the heap in the local memory is

LLiinnkkeerr

4-23Programmer’s Reference
Version 1.0

equal to 1K. The parameter is set be default in
case of including the library of control of the
dynamic memory into the input files list.

-heap1=0x400 Set/Not set Initial size of the heap in the local memory is
equal to 1K. The parameter is set be default in
case of including the library of control of the
dynamic memory into the input files list.

-stack=0x400 Set Initial stack size is equal to 1K
start=start Set Label start with a global bonding type is

regarded as a default input point.
-asm Not set Support of primary initialization of global

variables in C++ is enabled.
-l"" Set With undefined global symbols found in the

operational catalogue the search of libraries is
performed where these symbols could be defined.

-addr=0x00000000 Set In the absence of the configuration file one
loadable segment with the load address
0x00000000 is created.

4.10 Correct and Incorrect Option Combinations
A part of the linker parameters called information parameters (-h, -?, -t, -
p) cannot be used in combination with others, not included in this group.
The main purpose of these parameters is the presentation of information
to a user regarding the procedure of linker startup, input parameters used,
version, location. In so doing, when the linker encounters an information
parameter, it ceases the operation. For example, being faced with the
input parameters combination
-q=file.log test.elf -h

the linker will not start the procedure of input object file processing but
will only supply reference information with a list of control keys to
file.log.

For each type of an output file its own set of input parameters exists.
Presented below are sets of input parameters for each type of an output
file generated by the linker.

Set of input parameters of an absolute executable file.
Table 4-6. The Absolute Executable File Options

Option Description

-a absolute executable file.
-cfilename configuration file assignment.
-heap=size heap size in the local memory (kilobytes)

LLiinnkkeerr

4-24 Programmer’s Reference
Version 1.0

-heap1=size heap size in the global memory (kilobytes).
-stack=size stack size (kilobytes)
-start=label point of input to the program
-asm disabling the support of initialization of global static

objects in C++ language.
-lpathname Path to the catalogue of library files.
-d0 Ban on the deletion of dead sections.
-d1..3 Saving of debugging information in the mode of dead

sections deletion.
-d4 Deletion of all debugging information and dead

sections.
-mfilename creation of the memory map of an absolute relocatable

file

Table 4-7.The Executable Relocable File Options

OPTIONS DESCRIPTION

-r Executable relocatable file.
-heap=size heap size in the local memory (kilobytes)
-heap1=size heap size in the global memory (kilobytes).
-stack=size stack size (kilobytes)
-start=label point of input to the program

-asm disabling the support of initialization of global static
objects in C++ language.

-lpathname Path to the catalogue of library files.
-d0 Ban on the deletion of dead sections.

-d1..3 Saving of debugging information in the mode of
unused sections deletion.

-d4 Deletion of all debugging information and unused
sections.

Table 4-8. The Object File Options

OPTION DESCRIPTION
-e Object file.

Attempts to input parameters included in various sets may at best lead to
ignoring a part of the parameters with warnings displayed, and at worst -

LLiinnkkeerr

4-25Programmer’s Reference
Version 1.0

the process of creating an output file will be stopped with an error
message displayed. In fact, the attempt to simultaneously create output
file (-e) and input point (-start=label) should lead to ignoring the
second parameter, and the simultaneous use of keys -е and -а - to an
error.

4.11 Configuration file
The configuration file is used by the linker only at creating absolute
executable files. It contains the information as follows:

• on the ranges of accessible physical addresses and hardware
characteristics of the memory banks of processor NM6403 (physical
memory configuration);

• on the layout of the application program segments in the memory and
their sizes (logic memory configuration);

• on the attribution of code sections, data and other elements of the
program to particular segments;

• on the alignment of sections and segments to the border of memory
pages or to other values.

A configuration file is a text file written in some formal Си-similar
language of description.

The file consists of an arbitrary quantity of description blocks of three
types:

• memory descriptions (MEMORY),

• segment descriptions (SEGMENTS),

• section descriptions (SECTIONS).

Example of a configuration file:

LLiinnkkeerr

4-26 Programmer’s Reference
Version 1.0

Figure 4-3. An Example of the Linker Configuration File

MEMORY /* physical memory configuration */
{
 LOCAL0 at 0x00000000, len = 0x00100000, page = 0x10000;
 LOCAL1 none;

 GLOBAL0 at 0x80000000, len = 0x00100000;
 GLOBAL1 at 0x80100000, len = 0x00100000;
}

SEGMENTS /* logic memory configuration (segments) */
{
 name1 in GLOBAL0, length = 0x1000;
 name2 in GLOBAL1, len = 1024;
 name3 at 0x30000000, l = 2048;
 name4 in LOCAL0;
}

SECTIONS /* Layout of sections by segments */
{
 .text in name2, align page;
 .data in name1;
 .text1 in name1, align page;
 .nobits in name3;
 .heap at 0x10020000;
 .stack at 0x00010000;
}

If sections MEMORY and SECTIONS are absent the linker supposes
that a default model of memory is used. In this case all sections of the
object file are located by addresses starting from 0х00000000, in the
order of their coming.

Numeric values can be written in decimal and hexadecimal formats, in
the same way as in languages C/C++: a decimal value consists of decimal
digits and starts not from zero, hexadecimal values have prefix 0x, that is
followed by a sequence of hexadecimal digits 0..9, A..F, a..f.

4.11.1 MEMORY Section
Section MEMORY contains the description of the physical configuration
of memory accessible to the computer processor. The whole memory is
broken down by address fields named as banks.

For each memory bank parameters are put as follows:

LOCAL0
LOCAL1
GLOBAL0
GLOBAL1

- reserved names of memory banks;

len - memory bank size

LLiinnkkeerr

4-27Programmer’s Reference
Version 1.0

page - memory bank page size

4.11.1.1 Reserved Names for Memory Banks

Memory banks may have only one of four names: LOCAL0, LOCAL1,
GLOBAL0, GLOBAL1.

Section MEMORY should contain the characteristics of each memory
bank. If one or several banks are not available in a given configuration,
this should be reflected by means of using key word none opposite the
name of a corresponding bank.

For each bank its own page size can be preset. A user may control only
the page size of the memory bank. If the value of this field is not put by
the user, a default meaning is assigned to it that corresponds to the
maximum possible size of the page. All the remaining parameters of the
section are defined by a physical configuration of a computation device.

Example of section MEMORY:
MEMORY /* Physical configuration of memory */

{

 LOCAL0 at 0x0, len = 0x100000, page = 0x10000;

 LOCAL1 none;/*Bank1 of the local memory is absent */

 GLOBAL0 at 0x80000000, len = 0x00100000;

 GLOBAL1 at 0x80100000, len = 0x00100000;

}

4.11.1.2 Memory Default Pattern

When a configuration file is not preset or section MEMORY is absent
from it, the linker uses a default memory pattern. This patter is based on
the architecture of processor NM6403 and it implies that all 32-bit space
is accessible to a user. The initial address of the executable file layout in
the processor memory is supposed as equal to 0х00000000. For loading
absolute executable files a single one-size segment is created. The
sections are arranged into the segment in the order as they come,
however there are two priorities of the layout. Sections of initialized data
come under the first priority, those of non-initialized - under the second
one. Such an approach makes it possible first to arrange initialized
sections in the segment, and after that - non-initialized ones.

4.11.2 SEGMENTS Section
In section SEGMENTS the layout of the segments of the application
program by memory banks is preset.

Each segment has the following attributes:

name - segment name, no more than 32 symbols. Symbols A-Z,
a-z, ., _ can be used for presetting a name. Spaces inside

LLiinnkkeerr

4-28 Programmer’s Reference
Version 1.0

the name are not permissible. The segment name is not
included into any of the name tables, it is preset only for
the convenience of reading the configuration file and for
issuing the information of errors.

length
or
len
or
l

- segment size. It may be omitted. In this case the
segment may swell to the limits of the bank wherein it is
defined. Segment size limits its maximum volume.
Actually the segment may be of lesser size since this size
is defined by the sizes of sections contained in it.

Segment cannot cross the border of the memory bank, i.e. it always
belong to one bank only. To avoid confusion similar names should not be
used for different segments.

Belonging of a segment to a particular bank is defined by using key word
in. If several segments are located in the bank, they are arranged one
after the other, in an order defined in the configuration file. In this case,
the address of each segment is calculated only after arranging all
segments, however it is within the border limits of the addresses of the
bank which said address belongs to.

Exact address in the memory can be assigned to a segment with the aid of
key word at. It should belong to the range of accessible physical
addresses of the processor. Thus the address of this segment is preset in
advance and the distribution of other segments is realized with
consideration for this fact.

Example of section SEGMENTS:

SEGMENTS /* Logic configuration of memory (segments) */

{

 name1 in GLOBAL0, length = 0x1000;

 name2 in GLOBAL1, len = 1024; // segment with top-limited size

 name3 at 0x30000000, l = 2048;// segment with defined address

 name4 in LOCAL0; // segment with floating size

}

A segment may have no size preset, then the linker will calculate it by
itself. The segment size is defined as a sum of sizes of sections included
into it with consideration of their alignment. Practically the segment may
contain both the sections defined in the configuration file and those,
whose memory layout is not regulated there though these sections are
loadable. The segment floating size implies that sections can be added to
it not described in the configuration file, without any restrictions within
the limits of this memory bank.

Alignment of the segment is equal to the maximum alignment of sections
included into it. That is, if a segment consists of three sections, and one
of them is aligned to the border of a memory page and the rest - to the

LLiinnkkeerr

4-29Programmer’s Reference
Version 1.0

border of a 64-bits word, the entire segment will be aligned to the border
of a memory page.

4.11.2.1 Distribution of Segments Within the Limits of Memory Bank.

Several versions of segment distribution within the memory bank exist:

• distribution of segments of preset sizes. In this case the linker arranges
segments in the order as they follow that is presented in the
configuration file. The segments are arranged one after the other with
consideration for alignment constants preset for each segment. If the
space in the bank is insufficient the linker will issue a corresponding
error. Real addresses of the segments will be calculated after the
layout process is finished,

• distribution of segments when one of them has a predefined size and
address. If this segment is not the first in the list the bank is divided
into two parts. The first part is complemented with the segments in an
order determined in the configuration file. A segment with a defined
address is skipped. If there is no space for a segment next in turn, it is
placed after a segment with a defined address. The formed free space
remains unfilled,

• distribution of segments when one of them has a floating size.
Regardless of anything, first placed in the bank are all segments
whose sizes are determined only by sections described in the
configuration file. Further, the segments are complemented with
sections being loaded that are not mentioned in the configuration file.
If a segment with a floating size is the first in the list, all these
sections are added to it. In this case a check for the excess of the
memory bank size is realized. If a preset size segment is the first,
sections are added to it until its real size exceeds a preset threshold.
Then the remaining sections will be added to the following segments
according to the same procedure,

• distribution of segments when two of them have a floating size. The
situation almost does not differ from the previous paragraph. All
additional sections will be added to the first segment with a floating
size, therefore the availability of a floating size with the second
segment is of no importance, actually, it will not differ in anything
from segments with a limited maximum size,

• distribution of segments when a segment with a floating size is located
before that with a defined address. In this case the first segment may
be increased to a certain limit, i.e. its size is limited by an address
space from the bank beginning to the beginning of the defined address
segment. Further procedure of adding sections remains unchanged.

4.11.3 SECTIONS Section
This section contains the description of sections loaded that constitute the
object file. Each section may have attributes as follows:

LLiinnkkeerr

4-30 Programmer’s Reference
Version 1.0

name - section name. For presetting a name symbols: A-Z,
a-z, _can be used. Spaces inside the names are
impermissible. As in the assembler language a
section name should not be preceded by a point, i.e.
the names of sections in assembler and in the
configuration file coincide.

align page - alignment with the memory page beginning. This
means that a section should start with an address
multiple to the size of this bank memory page where
it comes from (by default all sections loaded are
aligned with the border of a 64-bits word).

A section always is included in a particular segment (here we are
speaking about absolute executable files only). If several sections belong
to one and the same segment they are arranged in an order defined in the
configuration file. Sections not mentioned in the configuration file
which, though, are loadable sections, are also added to the segments in
compliance with the rules described in subsection 4.11.1 on page 4-26.

Manual setting of the absolute address of a section: at 0x80000000; this
is an address that starts the layout of a section being described. In this
case for a given section a special segment is set that has a definite
address and size equal to the size of a section.

Presented herein is an example of SECTIONS section:

SECTIONS /* Layout of sections by segments */

{

 text in name2;

 data in name1;

 text1 in name1, align page;

 nobits in name2, align page;

 heap at 0x10020000;

 stack at 0x00010000;

}

The sequence of sections in a segment is determined by several factors,
as follows:

• common order of the layout of sections in a segment, when the
sections of initialized data are arranged first and then those of non-
initialized data,

• at first sections presented in the configuration file are arranged in a
segment, and then the remaining ones with a load flag.

The following example shows how the linker will arrange the sections in
a segment.

LLiinnkkeerr

4-31Programmer’s Reference
Version 1.0

• object file contains the following sections to be loaded:
textProc; (section of initialized data)
bss.dataVector; (section of non-initialized data)
dataVector; (section of initialized data)
textMain; (section of initialized data)
dataProc; (section of initialized data)
bss.dataProc; (section of non-initialized data)
textProc1; (section of initialized data)

• the configuration file presets the arrangement of several of them in
segment VECTORS:

SECTIONS
{
 dataVector in VECTORS;
 bss.dataVector in VECTORS;
 textMain in VECTORS, align page;
 textProc1 in VECTORS;
}

• actual arrangement of sections in the segment set by the linker:
// sections of initialized data.
dataVector; // from configuration file.
textProc; // not marked in configuration file.
textMain; // from configuration file.
textProc1; // from configuration file.
dataProc; // not marked in configuration file.
// sections of non-initialized data.
bss.dataVector; // from configuration file.
bss.dataProc1; // not marked in configuration file.

However, the actual arrangement of sections in the segment may differ
from the one presented above. What can affect this arrangement is the
alignment of section with the border of the memory page. For example, if
as a result of sections alignment between sections dataVector and
textMain an unused bucket is formed, the linker may place to it one of
the sections not mentioned in the configuration file. This depends on the
size of a section inserted and on the requirement of its alignment in the
memory. If section textProc with consideration for alignment has a
size less than that of the unused bucket, final arrangement of the sections
in the segment will be as follows:
// sections of initialized data.

dataVector; // from configuration file.

textProc; // not marked in configuration file.

textMain; // from configuration file.

textProc1; // from configuration file.

dataProc; // not marked in configuration file.

LLiinnkkeerr

4-32 Programmer’s Reference
Version 1.0

4.11.3.1 How to Name Data Sections

When filing the configuration of data sections names the following
circumstance should be taken into account: for each section of initialized
data (defined in the assembler by entry word data) the cross-assembler
creates a pair section of non-initialized data where all non-initialized data
declared in the initialized data section, are transferred (more detailed
information see in the document: NeuroMatrix® NM6403 SDK.
Assembly Language Overview.

If the section of non-initialized data has appeared as a pair of a
corresponding initialized section, its name is generated by means of
adding prefix "bss." to the beginning of the pair section name. That is,
if the section name was "dataVector”, the name of the pair section of
non-initialized data: "bss.dataVector". This fact needs to be
considered when forming the configuration file.

One of such section pairs may happen to be empty and, even if they both
are mentioned in the configuration file, a user, controlling the linker,
decides what should be done with the empty section: either leave it in the
output file, or remove using key -d[n] (see subsections 3.8.1,
3.8.2,.3.8.3).

4.12 An Example of Using the Linker
This example demonstrates the process of assembling object files
demo.elf, matrix.elf and a number of libraries used by them, into a
single program - absolute executable file. The input point start is defined
in file startup.elf.

Assume that the configuration of processor NM6403 physical memory is
as follows:

Global Memory:

• Bank 0 from address 0х80000000 to address 0х8003FFFF

• Bank 1 from address 0x80040000 to address 0x8007FFFF

Local Memory

• Bank 0 from address 0х00000000 to address 0х0003FFFF

• Bank 0 from address 0х00040000 to address 0х0007FFFF

Output sections are formed from the following input sections:

• pairs of sections MatrixArray and bss.MatrixArray from
matrix.elf should be arranged in the local memory, and sections
Matrix1Array и bss.Matrix1Array in the global memory,

• executable code contained in sections .text of files demo.elf and
matrix.elf, is gathered into one output section which needs to be

LLiinnkkeerr

4-33Programmer’s Reference
Version 1.0

arranged (by virtue of the task internal reasons) in the local memory in
address 0х00000200,

• from section .text function UDIV32 is called that realizes signless
division of 32-bits numbers. The function body is stored in library
module div.elf, which being part of the time execution library
libc.lib is located in catalogue d:\neuro\lib,

• from section .text function MulVects is called that realizes scalar
multiplying of matrixes. The function body is stored in the library of
vector-matrix computations matvect.lib located in the current
catalogue,

• the program uses the operation with dynamically isolated arrays. With
this view functions of execution time libraries libc.lib are
connected located in library modules malloc.elf, calloc.elf and
free.elf.

The configuration file for the linker demo.cfg looks in the following way:
MEMORY /* physical memory of neuroprocessor */

{

 LOCAL0 at 0x00000000, len = 0x40000, page = 0x4000;

 LOCAL1 at 0x00040000, len = 0x40000;

 GLOBAL0 at 0x80000000, len = 0x40000;

 GLOBAL1 at 0x80040000, len = 0x40000;

}

SEGMENTS

{

 GlobalSeg in GLOBAL0;

 LocalSeg in LOCAL0;

}

SECTIONS

{

 text at 0x00000200;

 MatrixArray in LocalSeg;

 bss.MatrixArray in LocalSeg, align page;

 Matrix1Array in GlobalSeg;

 bss.Matrix1Array in GlobalSeg, align page;

 stack in LocalSeg, align page;

 heap in LocalSeg, align page;

 heap1 in GlobalSeg, align page;

}

LLiinnkkeerr

4-34 Programmer’s Reference
Version 1.0

Command file demo.cmd stores all the keys of the linker start-up, the
names of input object files, of the configuration file:
-a -oOUTFILE.ABS -cdemo.cmd -ld:\system\libs -
mdemo.map

-stack=4096

-heap=65536

-heap1=65536

demo.elf

matrix.elf

The command line of the linker startup looks as follows:
linker.exe @file.cmd

The information of the program arrangement of the in the processor
memory can be received by scanning the content of the memory map file
demo.map:

4.13 Linker Error Messages
In the course of operation, the linker may encounter incorrect data. In
this case, it will send a message to the screen. For displaying messages,
the linker uses a formatted line. Its format is unified for the whole SDK
complex and looks as follows:

«[file_name]»: error_type error_number: message_of_error

Where:

file_name - name of file where an error occurred at the parsing of its internal
structure. Field file_name can be absent when the error took
place outside the block of parsing of input files.

error_type - one of error types presented below in this Section.

error_code - symbolic designation of an error. It is a alphanumeric code
whose first three symbols present the abbreviation of the name
of component that generated the error message and the rest
represent its number. Each SDK component has an independent
numbering of errors. Example of the error code: LNK412.

message_of_error - short reference information on the reason of the erroneous
situation in the course of the particular SDK component
operation.

Example:
"file.elf" ERROR LNK412: "Several symbol tables in one file !"

LLiinnkkeerr

4-35Programmer’s Reference
Version 1.0

All incorrect situations are divided by the linker into four groups
according to four types of errors:

• Warnings. A warnings appears when an incorrect situation occurred
may affect the final result of the librarian operation, however the
librarian has enough information for creating a correct output file. For
example, when one of the input directives cannot be used in a
particular mode of the librarian operation, the linker issues
corresponding warnings. In this case the work on parsing the
remaining input parameters continues.

• Errors. An error arises when because of incorrect input data a
librarian is not capable to create a correct output file. For example,
In a situation like this error message is displayed, and the librarian
ceases the work and returns a non-zero value.

• Internal errors. An internal error may arise due to the incorrect work
of a librarian itself. At the appearance of a situation like this all initial
data are recommended to be transferred to programmers for
eliminating the defects. Under this situation the message of internal
error is displayed, and the librarian ceases the work and returns a non-
zero value.

• Fatal errors. A fatal error appears in case of memory shortage for
librarian’s work. It testifies to the fact that in a situation turned-out the
work of the librarian with given input parameters cannot be continued.
The system parameters need to be changed.

Three figures are allocated for an error number, i.e. it is within the range
of 0 to 999. Among the types of errors numbers were distributed in the
following way:

0 - 399 Warnings.

400 - 799 Errors.

800 - 949 Internal errors.

950 - 999 Fatal errors.

4.13.1 Warnings

LNK001 "Section"..." should not have a relocation table. Table is ignored."
 - a section should not have a relocation table but yet it has it. In this situation

the relocation table is ignored. The error has occurred in the process of
formation of a particular object file. If later on, the linker will not manage to
create an output file, a corresponding error will arise. At this particular stage
only a warning is displayed that does not lead to the linker work stoppage.

LNK003 "Default size of heap "..." is equal to 1K of words (32-bit)"
 - a warning that a user has not preset the size of a corresponding heap of

LLiinnkkeerr

4-36 Programmer’s Reference
Version 1.0

dynamic memory although he used in his program operation functions from
the dynamic memory. Since the time execution library does not trace the
output outside the heap, the user should himself take care of it. Therefore the
warning reminds that the user has not preset a new heap size and its default
size is 1K of words.

LNK004 "Wrong parameter "...". It is ignored."
 - a warning that a user has preset an incorrect parameter in the command line

or command file. This parameter in no way affects the process of execution
of its work by the linker.

LNK005 "Repeated key setting "...". It is ignored."
 - a warning that a user has repeatedly preset a parameter in the command line

or command file. This parameter is ignored..
LNK006 "To avoid the removal of input file output file has extension ".elz"."
 - a warning that a user may spoil the content of an input object file since its

name coincides with that of an output one. Such a message is issued in the
object file assembly mode (key -elf или -е) with the name of output file not
preset. Since by default all object files have extensions ".elf" there is a risk
of losing the input file. To eliminate this problem the linker will create an
output file with extension ".elz".

LNK007 "In the command file a call of another command file is found. It is ignored."
 - a warning that a user is trying to realize a recursive call of the command

file. That is to say, in the command file the call of another command file
cannot be contained. The linker ignores this directive.

LNK008 "Cannot open command file "...". It is ignored."
 - a warning that the linker cannot open the command file specified as a

parameter of the command line. This instruction is ignored.
LNK010 "When creating object file key "-d" is ignored."
 - a warning that in the mode of object file creation key -d designating the

deletion of dead sections is ignored.

4.13.2 Errors

LNK401 "Reference to undefined local symbol "..." from section "..."."
 - this error may arise due to the appearance of an error in the input object

file whose name is presented at the beginning of the message formatted line.
LNK402 "Section "..." has different flags in different files."
 - that means that in one of input object files the header of this section

contains the flag of its load to the computer memory whereas in the other file
the section does not contain this flag, i.e. is not loadable. The error can be
generated by improper operation of the assembler compiler or by a failure in
the object file.

LLiinnkkeerr

4-37Programmer’s Reference
Version 1.0

LNK403 "Shortage of space in segment "..." for locating sections."
 - this error arises when it is written in the configuration file that segment

«...» has a preset size and contains some set of sections, and in the course of
the computation of sections size it occurs that there is a shortage of space for
them in the segment. The error can be corrected by means of either
increasing the segment size or relocating one or several sections to another
segment.

LNK404 "Unknown type of reference in section "..."."
 - this error arises when in a corresponding field of an object file a meaning

different from the expected one is stored. In all there are three types of
reference to a symbol: absolute, relative and byte reference. If in a field
defining the reference type another meaning is put, this causes an error. The
error can result from improper work of a cross-assembler or a failure in the
object file.

LNK405 "Input point is not preset "..."."
 - this error arises when the linker cannot define the address of the global

label defining the input point. By default the input point is named "start".
Therefore the linker defines the address of symbol "start" as an input point.
With the change of the input point name the linker uses the address of a new
global symbol. If the symbol is not defined this error arises. (see par. 3.8.6
Defining input point name (key -start=<label_name>) on p. 3-17)

LNK406 "Structure of this file does not correspond to format ELF."
 - this error arises when the linker tries to open a file that is not an object file,

or its format does not conform with the one adopted within the base
Software. A check is necessary whether it is that file that is supplied to the
input of the linker.

LNK407 "This processor type is not supported."
 - this error arises when trying to supply to the linker input an object file of

ELF format intended for a processor type not supported by this base
Software (for anyone except processor NM6403). When this error arises it is
necessary to recompile the initial text of the program from where this object
file was received.

LNK408 "This file is created with the aid of obsolete version of library of access to
ELF."

 - when this error arises it is necessary to recompile the initial text of the
program from where this object file was received. Probably, a new version of
the linker generates object files that turn out to be inconsistent in their
internal structure with files received with the aid of the previous linker
version.

LNK409 "Several symbol tables are not supported in one file."
 - this error may appear when an object file received by the linker as an input

parameter contains several symbol tables. This configuration is not forbidden
by ELF format, however the base Software of processor NM6403 is

LLiinnkkeerr

4-38 Programmer’s Reference
Version 1.0

designed for storing only one symbol table in the object files generated
within the processor framework. With the appearance of this error it is
necessary to recompile the initial text of the program from where this object
file was received.

LNK410 "Unknown type of section ("...")."
 - this error may arise when in the structure of an input object file a section

was found whose type the linker could not define. In all there are five types
of sections encountered in the object files of ELF format: section of
initialized and non-initialized data, symbol table, line table and references
table. If in the field of a section header a meaning is written that does not
correspond to any section type, this error will arise. Should this error appear,
it is necessary to recompile the program initial text from where this object
file was obtained.

LNK411 "Symbol table is not found."
 - this error appears when the linker is unable to find a symbol table in an

input object file. The symbol table should exist even in case the initial
program contains none of symbols. In this case it consists of one zero
element. The appearance of this error requires recompiling the initial text of
the program from where this object file was derived.

LNK412 "Table of symbol names is not found."
 - this error arises when the linker is unable to find the table of symbol names

in the input object file. The table of symbol names should exist even in case
the initial program contains none of symbols. In this case it consists of one
zero element. The appearance of this error requires recompiling the initial
text of the program from where this object file was derived.

LNK413 "Wrong field in the symbol table header."
 - this error arises when a field storing the size of a symbol table element is

equal to zero. The error may be generated due to the improper operation of
the assembler compiler or a failure in the object file. If it arises, the initial
text of the program from where this object file was derived, should be
recompiled.

LNK414 "Wrong field in header of relocation table "..."."
 - this error arises when a field storing the size of a reference table element is

equal to zero. The message contains information in what particular table a
failure occurred. The error may be generated due to the improper operation
of the assembler compiler or a failure in the object file. If it arises, the initial
text of the program from where this object file was derived, should be
recompiled.

LNK415 "Symbol "..." has different types in different files ."
 - this error arises when in one of input object files symbol "..." is declared

as a data object and in another file it is referred to as a label (and vice versa,
declared as a label and referred to as an object of data). To correct the error a
programmer should straighten out the work with this symbol, to bring its

LLiinnkkeerr

4-39Programmer’s Reference
Version 1.0

type into adequacy in various initial files in assembler or C++ language..
LNK416 "Redefining global symbol "..."."
 - this error arises when a global symbol is defined in several object files.

Normally global symbols are defined in one file only and in other files it is
declared as external. The task of the linker is to identify all references to this
global symbol with the symbol itself and to correctly calculate its address in
the computer memory. If the global symbol is declared in several locations,
the linker is unable to define its address. To correct the error, symbol
declaration should be left in one file only (with the use of word global), and
in other files to declare it as an external symbol (with the use of key words
weak or extern).

LNK417 "Global symbol "..." is not defined."
 - this error occurs when in all input object files this global symbol is declared

as external (with the use of key words weak or extern), and there is no place
where it would be declared global with a location allotted for it. Key word
global leads to the allotment of location for the global symbol whereas
extern only declares the symbol as external, with no place allotted for it. To
correct the error this symbol should be declared as global in one of the files
of initial texts.

LNK418 "None of input files is preset."
 - this error arises when there is none of input object files in the command

line or command file of the linker.
LNK419 "Absolute file cannot be an input parameter."
 - this error arises when in the linker command line or command file an

absolute executable file is transferred as an input object file.
LNK420 "This type of object file of ELF format is not supported."
 - this error arises when an object file created outside the base Software of

processor NM6403 is supplied to the linker input. If it appears, the initial
text of the program from where this object file was obtained, should be
recompiled.

LNK421 "common-symbol "..." has type "label"."
 - this error arises when a common-symbol of «label» type is declared in the

program in assembler language (example: common AAA: label;). Common-
symbol may only have «data» type. In case of this error a correction should
be introduced to the file in assembler language.

LNK422 "Symbol "..." stores wrong type of a section."
 - error in an input object file. Each symbol of the symbol table apart from the

information of a file where it is defined contains the information on an input
section where a location was allotted for it. This information is stored in the
form of an index in the table of input file section. If this index indicates a
section that is not a data section, this error arises (function issuing the error -
CalcSymAddr). Probably, the error occurred due to a failure that took place
at creating an input object file. It is necessary to create the object file anew

LLiinnkkeerr

4-40 Programmer’s Reference
Version 1.0

with the aid of the assembler. If this does not lead to the error elimination
this problem should be passed for solution to the programmers of the
assembler compiler.

LNK423 "Reference from section "..." to a symbol defined in auxiliary section."
 - error in an input object file. In the relocation table of the said data section a

reference was found to the symbol defined in the auxiliary section, i.e. in the
table of symbol names.

LNK424 "Quantity of undefined symbols "
 - this information line sums up the search of definitions of undefined global

symbols in library files. It arises only in case there is at least one undefined
global symbol left.

4.13.3 Fatal Errors

LNK951 "Error at request of ... memory bytes."
 - this error occurs when there is not enough space for the linker operation.

Attempt to allocate the following array in the field of dynamic memory for
locating internal structures ends in a failure. As a result the work cannot be
continued. To correct the situation it is necessary to somehow deallocate the
dynamic memory, for example, to unload some resident programs or to
increase the free space on the disc where a system temporary file is created.

LNK952 "Cannot create output file "..."."
 - this error arises due to some failures in the operational system when

creating a file. For instance, this error may be caused by a space shortage on
the disc or the absence of a catalogue where a user wishes to record a file, or
a ban on filing in certain catalogues imposed by the operational system.
Before continuing the work with the linker the reason for the error should be
found or another place on the disc should be chosen to write down the file.

LNK953 "Cannot open file "..."."
 - this error arises due to the problems generated by an operational system.

For example, at an attempt to open a file used at the same time by other
applications. Before going on the work with the linker one should realize
what the reason for the error was.

 LNK954 "File "..." is not found."
 - this error arises due to the absence of an input file with this name.

Programmer’s Reference
Version 1.0

5 Librarian

5.1 INTRODUCTION ..5-3
5.2 LIBRARIAN FEATURES ..5-3
5.3 LIBRARIAN DEVELOPMENT FLOW..5-3
5.4 INVOKING THE LIBRARIAN...5-4
5.5 LIBRARIAN OPTIONS ..5-5
5.5.1 Creating the Library (-c Option) ..5-5
5.5.2 Adding Files to the Library (-a Option) ..5-5
5.5.3 Replacing Files in the Library (–r Option) ...5-5
5.5.4 Deleting Files from the Library (-d Option)..5-5
5.5.5 Extracting Files from the Library (-e Option) ...5-6
5.5.6 Viewing the Content of the Library (-l Option)...5-6
5.5.7 Printing Out Reference Information (-h/-? Option) ..5-6

5.6 USING THE COMMAND FILE ..5-7
5.7 USING WILDCARDS ...5-7
5.8 EXAMPLES OF INVOKING THE LIBRARIAN...5-7
5.9 AN EXAMPLE OF USING THE LIBRARIAN ..5-8
5.9.1 Creating the Library .. 5-8
5.9.2 Adding Object Files to the Library...5-8
5.9.3 Extracting Object Files from the Library..5-8
5.9.4 Replacing a File in the Library ..5-9
5.9.5 Deleting a File from the Library...5-9

5.10 LIBRARIAN ERROR MESSAGES ...5-9
5.10.1 Warnings... 5-10
5.10.2 Errors .. 5-10
5.10.3 Fatal Errors ... 5-11

LLiibbrraarriiaann

5-2 Programmer’s Reference
Version 1.0

LLiibbrraarriiaann

5-3Programmer’s Reference
Version 1.0

5.1 Introduction
This chapter describes the interface, control parameters and operation
modes of a librarian of object files from NM6403 SDK. Full description
of librarian capabilities and the methods of work with is presented with
including information on all keys and on using command files. A list of
errors is also presented here that is found or diagnosed by the librarian.
With the purpose of better comprehension examples of operation with the
object file librarian are cited.

5.2 Librarian Features
The librarian of object files is an auxiliary means in the set of
NeuroMatrix® NM6403. This program is intended for the work with
object file libraries of ELF format, these files being obtained with the aid
of assembler and linker of NeuroMatrix® NM6403 SDK.

The librarian is not designed for the work files of ELF format created by
other program means. The program allows the following:

• to create libraries from the sets of object files,

• to list the content of libraries,

• to add, delete and replace files in libraries,

• to extract object files from libraries.

The librarian of object files is console application Windows95/NT.

The librarian of object files is oriented to operation only with files of
ELF format. It fully supports this format with the exception of creating
and processing dynamic libraries.

5.3 Librarian Development Flow
Figure 5-1 illustrates the position of the librarian in the SDK structure
and its place in the process of developing application programs for
processor NeuroMatrix® NM6403.

LLiibbrraarriiaann

5-4 Programmer’s Reference
Version 1.0

Figure 5-1. Librarian Development Flow

Assembler

C++ Compiler

C++ Source
Files

Assembler
Source

ELF Object
Librarian

Assembler

ELF Object
Files

Linker

Executable ELF
Object Files

Processor
NeuroMatrix®NM6403

NM6403 Simulator
Family

Handmade
Assembly Source Files

Results of
Execution

Debugging

Macro
Libraries

Macro
Source Files

ELF Object
Libraries

5.4 Invoking the Librarian
To invoke the librarian, enter:

libr [command] [archive_name [files_list]]

where:

libr Name of librarian executable file.

command Parameter controlling the librarian operation mode.

archive_name Name of library the librarian works with.

files_list List of object files added to or extracted from the library.

LLiibbrraarriiaann

5-5Programmer’s Reference
Version 1.0

5.5 Librarian Options
To control the librarian operation a set of parameters (keys) is used.

All parameters are preceded with prefix "-".

They can be specified in a command line or command file (see 5.6 on
page 5-7).

Table 5-1 presents the list of librarian control parameters.
Table 5-1. List of Librarian Options

OPTION DESCRIPTION

-c [create] Creating library of object files.

-a [add] Adding files to the object file library.

-r [replace] Replacing files in the object file library.

-d [delete] Deleting files from the object file library.

-e [extract] Extracting files from the object file library.

-l [list] Viewing the content of the object file library.

-h [help]/-? Short information of the program use.

5.5.1 Creating the Library (-c Option)
Under this mode the name of a library created and names of object files
enabled should be specified. When specifying the names of object files
the use of wildcards: '*' and '?' is permitted. If the name of an existing
file is used as a library name, this file first will be removed.

5.5.2 Adding Files to the Library (-a Option)
This mode is similar to the previous one except that in case of the
existence of a library with a specified name this library will not first be
eliminated, the such object files will be added to the library. If, when
trying to add a file to the library, it occurs that the file with such name
already exists in the library, the addition will not take place.

5.5.3 Replacing Files in the Library (–r Option)
The mode is similar to mode add except that the object files specified in
the command file will be added to the library regardless of the
availability or non-availability of files of the same name in the library.

5.5.4 Deleting Files from the Library (-d Option)
In the deleting mode the name of the library and the files being deleted
should necessarily be specified in the command line. If there is no file
with the specified name in the library, the librarian issues a warning and
continues operation.

LLiibbrraarriiaann

5-6 Programmer’s Reference
Version 1.0

5.5.5 Extracting Files from the Library (-e Option)
This mode makes it possible to extract modules from the library and to
place them to individual object files. The library in this case is not
changed. When extracting, the library name should be specified in the
command line. If the names of the object files are not specified, all
modules will be extracted from the library. When extracted, the files
created receive current time.

5.5.6 Viewing the Content of the Library (-l Option)
The list of library elements is displayed with the indication of name, time
and size. The key itself may be not specified in the command line, for
example:
libr library.lib

5.5.7 Printing Out Reference Information (-h/-? Option)
Short information is also given at the program start-up without
parameters or with keys -h, -?. Its view is as follows:

Figure 5-2. The Librarian Reference Information

Librarian * v1.02 * (c) 1997-99 * RC Module.

Usage: libr [command] [libname] [filelist]

 command - running mode

 libname - library name

 filelist - object files list

Options list:

 -h or -? - short help (this one)

 -l - list library files

 -c - cteate library

 -a - add files in library

 -d - delete files from library

 -e - extract files from library

 -r - update files in library

Notes:

 1. Default running command is '-l'.

 2. '-c' mode usage will delete old file with the same name.

 3. In '-e' mode all files will be extracted if filelist is not specified.

 4. Extracting file deletes old one with the same name.

 5. In '-d' or '-r' mode it creates a temporary copy of library.

LLiibbrraarriiaann

5-7Programmer’s Reference
Version 1.0

5.6 Using the Command File
A part of librarian parameters can be placed to the command file. In this
case the command line looks as follows:
libr @command_file_name.

Several command files may exist:
libr @command_file1 @command_file2.

In addition, only a part of the command line can be placed into the
command file, for example:
libr @command_file_name.

Nested command files are illegal and are not processed.

A command file is a text file containing admissible parameters divided
by an arbitrary number of dividers. Spaces, symbols of tabulation and
line transfer can be used as dividers.

Example of a command file.
-с mylib.lib

file1.elf file2.elf

file3.elf file4.elf

When calling a librarian with a particular command file a library
mylib.lib will be created that will incorporate the above-listed object
files.

5.7 Using Wildcards
The use of wildcards as the names of object files is allowed in the
commands of creating (-c), adding (-a) and replacing (-r). In the
extraction command the use of wildcards is not allowed, however the
names of object files can be omitted, in this case, all files are extracted.
In the rest of cases the use of wildcards is impermissible.

5.8 Examples of Invoking the Librarian
Table 5-2 presents various versions of invoking the librarian.

Table 5-2. Examples of Invoking the Librarian
COMMAND LINE DESCRIPTION

libr Short information of program use
libr -h Short information of program use
libr -? Short information of program use
libr libname [filelist] Viewing the list of library files.
libr -l libname [filelist] Viewing the list of library files.

LLiibbrraarriiaann

5-8 Programmer’s Reference
Version 1.0

libr -c libname [filelist] Creating the library.
libr -a libname [filelist] Adding files to the library.
libr -d libname [filelist] Deleting files from the library.
libr -e libname [filelist] Extracting files from the library.
libr -r libname [filelist] Replacing files in the library.

5.9 An Example of Using the Librarian

5.9.1 Creating the Library
libr -c first.lib *.elf

This command will create the library with name first.lib and include
in it all the files from the current catalogue that have extension elf. If
the file with name first.lib already exists in the current catalogue, it
will first be removed.

The cited command can be also written in the form as follows:
libr -c first *.elf,

since extension .lib is used by the librarian for default libraries. If there
is a need to create a library without extension, a point should be put after
the library name:
libr -c first. *.elf

This command will create library with name first.

5.9.2 Adding Object Files to the Library
libr -a first.lib *.elf

If there is file first.lib in the current catalogue, it will be checked for
its being a library of established format, and then all object files with a
corresponding extension and of ELF format from the current catalogue
will be added to it.

If there is no file first.lib in the current directory, the action of this
command does not differ in anything from that considered in subsection
5.9.1 on page 5-8.

5.9.3 Extracting Object Files from the Library
libr -e library.lib single.elf

As a result of action of this command a file with name single.elf will
be extracted from library library.lib.

The library will not be changed at this operation.

5.9.3.1 Extracting All Files from the Library
libr -e library.lib *.elf

LLiibbrraarriiaann

5-9Programmer’s Reference
Version 1.0

As a result of action of this command all files will be extracted from
library library.lib.

The library will not be changed at this operation.

Despite the fact that the files can be placed into the library with the
memorizing of a relative or absolute path, the path, when extracting, is
cut off from the file name, and all the files are placed in the current
catalogue. If two files with similar names (at different paths) were
contained in the library, when extracting these two files simultaneously,
the second file will override the first one. In this particular situation files
should be extracted one at a time specifying the full name of the file
(including the path).

5.9.4 Replacing a File in the Library
libr -r lib a1.elf

As a result of action of this command file a1.elf delivered as an input
parameter will replace the file with the same name in library lib. If there
is no such file in the library, a corresponding warning will be displayed,
and the file will be added to the library.

5.9.5 Deleting a File from the Library
libr -d lib a1.elf

As a result, of action of this command file a1.elf deliverd as an input
parameter will be deleted from the library lib. If there is no such file in
the library, a corresponding warning will be displayed, and an output file
with name a1.elf will not be created. To delete several files from the
library, they all should be listed in the command line.

5.10 Librarian Error Messages
In the course of operation the librarian may encounter incorrect data. . In
this case it will display a message to the screen. For displaying messages
the librarian will use a formatted line. Its format is unified for the entire
SDK complex and looks as follows:

«[filename]»: errortype errornumber: error_message.

Where:
filename - file name at whose internal structure parsing an error

occured. Field filename can be absent when the error
occured outside the block of input files parsing.

errortype - one of the types of errors given below in this section.
errorcode - symbolic designation of error. It is an alpha-numeric

code whose first three symbols represent the name
abbreviation of a component that generated the error

LLiibbrraarriiaann

5-10 Programmer’s Reference
Version 1.0

message, and the rest are its number. Each SDK
component has an independent error numbering.
Example of the error code: LBR412.

error_message - short reference information on the reason for an
erroneous situation in the course of operation of this
SDK component.

For example:
ERROR LBR407: Library "AAA.ELF" is not found.

All incorrect situations are divided by the librarian into four groups that
correspond to four types of errors:

• Warnings. A warnings appears when an incorrect situation occurred
may affect the final result of the librarian operation, however the
librarian has enough information for creating a correct output file. For
example, when one of the input directives cannot be used in a
particular mode of the librarian operation. The work in this case does
not stop.

• Errors. An error arises when because of incorrect input data a
librarian is not capable to create a correct output file. In a situation
like this error message is displayed, and the librarian ceases the work
and returns a non-zero value.

• Internal errors. An internal error may arise due to the incorrect work
of a librarian itself. At the appearance of a situation like this all initial
data are recommended to be transferred to programmers for
eliminating the defects. Under this situation the message of internal
error is displayed, and the librarian ceases the work and returns a non-
zero value.

• Fatal errors. A fatal error appears in case of memory shortage for
the the librarian work. It is an indication that in a situation occurred
the work of the librarian with given input parameters cannot be
continued. The system parameters need to be changed.

5.10.1 Warnings
LBR001 "Error at receiving time of file ... creation, current time is set. "

 - impossible to calculate the time of file creation. When recording,
current time is put in the library.

5.10.2 Errors
LBR401 "Controlling input parameter is missing."

 - the command of librarian control is absent (first parameter).
LBR402 "Library name not defined."

 - library name is missing.

LLiibbrraarriiaann

5-11Programmer’s Reference
Version 1.0

LBR403 "Cannot read input parameter number: ..."

 - parameter is absent. Parameter numbering is conducted from the
librarian control command that is defined as the first librarian
parameter.

LBR404 "Unknown command ..."

 - wrong command.
LBR405 "File ... is not a library."

 - wrong format of the library
LBR406 "File ... is not a library (...)."

 - wrong format of the library; In contrast to LBR403 in this case
original message of library LIBELF is displayed.

LBR407 "File... already exists in the library."

 - file with this name is already in the library.
LBR408 "Symbol ... (file ...") is already defined in the library."

 - impossible to add file to the library since the file contains a global
symbol with a name that already exists in the library symbol table.
The names of the symbol and of the file are indicated that could not
be added to the library.

LBR409 "Library ... not found."

 - library with preset name is not found in such catalogue

5.10.3 Fatal Errors
LBR950 "Error at request ... bytes of memory"
 - this error occurs when there is not enough memory for the

librarian operation. Attempt to allocate a following array in the field
of dynamic memory for locating internal structures ends in a failure.
As a result the work cannot be continued. To correct this situation it
is necessary to deallocate the dynamic memory, for example, to
unload some resident programs or to increase the free space on the
disc where a system temporary file is created.

LLiibbrraarriiaann

5-12 Programmer’s Reference
Version 1.0

Programmer’s Reference
Version 1.0

6 Decoder of Object and Executable Files

6.1 INTRODUCTION ..6-1
6.2 THE DUMPER OVERVIEW ...6-1
6.3 INVOKING THE DUMPER..6-1
6.4 THE DUMPER OPTIONS ..6-2
6.5 PROCESSING SPECIAL SECTIONS...6-2
6.6 AN EXAMPLE OF THE DECODED ELF FILE...6-3

Programmer’s Reference
Version 1.0

6.1 Introduction
This chapter describes NM6403 Decoder of Object and Executable Files,
its interface, its command line options and execution modes. Below in
this manual the NM6403 Decoder of Object and Executable Files is
referred to as the dumper.

6.2 The Dumper Overview
The dumper is intended to decode the contents of object and executable
ELF files. It allows the user to view object ELF files, object libraries and
executable ELF files.

The dumper is a command line application.

6.3 Invoking the Dumper
To invoke the dumper, enter:

dump [options] input_file [>output_file]

Dump This is the command that invokes the dumper

options This is a parameter list of dumper control. Can be
arranged in any place of a command line, in arbitrary
sequence. (More detailed discussion is presented
below).

input_file This is a name of the binary object file that the
dumper uses as input.

>output_file This is a name of the text file where the dumper
output information will be redirected. If the file is
not specified, all data will be printed out on screen.

The user is allowed to specify one or more binary input files and
command line options in order to determine the dumper operation.

The dumper returns information to the standard output. Its output
information can be redirected to a file, for instance:
dump MyApp.abs >MyApp.dmp

If the dumper is invoked without any command line options or input
filenames, it provides the list of options and all necessary reference
information.

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-2 Programmer’s Reference
Version 1.0

If a filename is only one command line option, the dumper prints all
information about the file structure (as shown in the example above).

6.4 The Dumper Options
The following options control the dumper’s behavior:

Option Description

-h The dumper omits the program header.
-e The dumper omits the ELF file header.
-p The dumper omits the contents of the program segment

table.
-s The dumper omits the contents of the section header table.
-d The dumper hides the contents of sections.
-a Address unit equals to 32-bit word (by the default for

executable files).
-b Address unit equals to 8-bit words (by the default for object

files).
-f The dumper hides the contents of library files. Only for

libraries.
-w The dumper prints DWARF sections as data sections, not as

symbols.

6.5 Processing Special Sections
The sections that begin with “text” or “.text” are treated as code
sections. The dumper disassembles them and presents them in the
following form:

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-3Programmer’s Reference
Version 1.0

Figure 6-1. Fragment of Disassembled Code Section

Section .text

0000000c: 0000e63f *[ar7++]=gr6,ar6 with nul

0000000d: 00008771 *ar6=ar7 set with nul

0000000e: 0000d747 02000000 *ar7+=00000002 with nul

00000010: 0000e03f *[ar7++]=gr0,ar0 with nul

00000011: 0000e13f *[ar7++]=gr1,ar1 with nul

00000012: 00000040 9c000000 *ar0=0000009c set with nul

00000014: 0000274a 98000000 * call 00000098 with nul

00000016: 00001050 *nul with nul

00000017: 00001050 *nul with nul

address mashine code disassembled source

If the user needs to disassemble a code section, it is necessary to call it
the following way: “.textMySectionName”, for instance:
“.textLocal” or simply “.text”. The other code sections are not
disassembled and they are presented in an output file as an array of
binary code. All codes and addresses are stored in hex format.

The sections with the names beginning with “.dwarf” are treated as
the sections of debugging information. If the –w option is not set they
will be interpreted by dumper and output in symbolic form. Otherwise,
the debugging information will be presented in form of a binary array.

6.6 An Example of the Decoded ELF File
Here is an example of the decoded executable file:

File: test0.abs

ELF Header:

Identification bytes:

File class: 32 bits class

Data encoding: low significant byte first

ELF version: Current version

File type: Executable absolute file

Target machine: NeuroMatrix

ELF version: Current version

Entry address: 0xc0000000

Program Segment Header Table offset: 0x34

Section Header Table offset: 0x238

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-4 Programmer’s Reference
Version 1.0

User define flags: 0x0

ELF header size: 0x34

Program Segment Header size: 0x20

Number of Program Segments: 3

Section Header size: 0x28

Number of Sections: 5

Index of .shstrtab sections: 1

Program Segment 0

Type: Loadable

File offset: 0xb8

Begin virtual address: 0x0

Begin physical address: 0xc0000000

Size in file: 0xe0

Size in memory: 0xe0

Segment flags: 0x0

Alignment: 8

Program Segment 1

Type: Loadable

File offset: 0x198

Begin virtual address: 0x0

Begin physical address: 0xc0000038

Size in file: 0x18

Size in memory: 0x18

Segment flags: 0x0

Alignment: 8

Program Segment 2

Type: Loadable

File offset: 0x1b0

Begin virtual address: 0x0

Begin physical address: 0xc000003e

Size in file: 0x88

Size in memory: 0x88

Segment flags: 0x0

Alignment: 8

Section: .shstrtab index:1

Type: String table

Flags:

Load address: 0x0

Offset in file: 0x94

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-5Programmer’s Reference
Version 1.0

Size: 0x22

Link: 0

Info: 0

Align address: 1

Entity size: 0

Section: .text_init index:2

Type: Program defined bytes

Flags: Allocate memory in process image

Load address: 0xc0000000

Offset in file: 0xb8

Size: 0xe0

Link: 0

Info: 0

Align address: 8

Entity size: 0

Section: .text index:3

Type: Program defined bytes

Flags: Allocate memory in process image

Load address: 0xc0000038

Offset in file: 0x198

Size: 0x18

Link: 0

Info: 0

Align address: 8

Entity size: 0

Section: .data index:4

Type: Program defined bytes

Flags: Allocate memory in process image

Load address: 0xc000003e

Offset in file: 0x1b0

Size: 0x88

Link: 0

Info: 0

Align address: 8

Entity size: 0

Section .shstrtab

.shstrtab

.text_init

.text

.data

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-6 Programmer’s Reference
Version 1.0

Section .text_init

c0000000: 00002748 0e0000c0 * goto c000000e with nul

c0000002: 00001050 *nul with nul

c0000003: 00001050 *nul with nul

c0000004: 00001050 *nul with nul

c0000005: 00001050 *nul with nul

c0000006: 0000274c feffffff * skip fffffffe with nul

c0000008: 00001050 *nul with nul

c0000009: 00001050 *nul with nul

c000000a: 00000000 * nul

c000000b: addeadde illegal instruction with gr5 = true

c000000c: 00000000 * nul

c000000d: 00001050 *nul with nul

c000000e: 00008043 fff780e8 *gmicr=e880f7ff set with nul

c0000010: 00f50300 *rep 32 vnul with 0

c0000011: 00001050 *nul with nul

c0000012: 00001040 20000000 *nul 00000020 with nul

c0000014: 00004043 93d625e2 *lmicr=e225d693 set with nul

c0000016: 00000043 f4fcffff *t0=fffffcf4 set with nul

c0000018: 0000404f 00c00cc0 *pswr set c00cc000 with nul

c000001a: 00004047 00c00000 *pswr reset 0000c000 with nul

c000001c: 00001050 *nul with nul

c000001d: 00001050 *nul with nul

c000001e: 00001050 *nul with nul

c000001f: 00001050 *nul with nul

c0000020: 00001050 *nul with nul

c0000021: 00001050 *nul with nul

c0000022: 00001050 *nul with nul

c0000023: 00001050 *nul with nul

c0000024: 00001050 *nul with nul

c0000025: 00001050 *nul with nul

c0000026: 00000044 defadefa *gr0=fadefade set with nul

c0000028: 0000c041 3e0000c0 *ar7=c000003e set with nul

c000002a: 0000274a 380000c0 * call c0000038 with nul

c000002c: 00001050 *nul with nul

c000002d: 00001050 *nul with nul

c000002e: 00001062 0a0000c0 *[c000000a]=gr0 with nul

c0000030: 00004044 17000000 *gr1=00000017 set with nul

c0000032: 00001162 0c0000c0 *[c000000c]=gr1 with nul

c0000034: 00002748 060000c0 * goto c0000006 with nul

c0000036: 00001050 *nul with nul

c0000037: 00001050 *nul with nul

Section .text

c0000038: 00000044 00000000 *gr0=00000000 set with nul

c000003a: 0000f703 * return with nul

DDeeccooddeerr ooff OObbjjeecctt aanndd EExxeeccuuttaabbllee FFiilleess

6-7Programmer’s Reference
Version 1.0

c000003b: 00001050 *nul with nul

c000003c: 00001050 *nul with nul

c000003d: 00001050 *nul with nul

Section .data

c000003e: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c0000042: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c0000046: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c000004a: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c000004e: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c0000052: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c0000056: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c000005a: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

c000005e: 00 00 00 00 00 00 00 00

Programmer’s Reference
Version 1.0

7 Instruction Level Simulator

7.1 INTRODUCTION ..7-1
7.2 ABOUT NM6403 SIMULATOR ...7-1
7.3 INVOCATION OF SIMULATOR ...7-1
7.4 SIMULATOR’S OPTIONS..7-1
7.4.1 Checking Parity of the Stack Pointer (option -S)...7-2
7.4.2 Checking Silicon Bugs (option -B) ..7-2
7.4.3 Memory Size Option -m ..7-2

7.5 MEMORY CONFIGURATION ...7-2
7.6 USER PROGRAM REQUIREMENTS...7-2
7.6.1 Breakpoint... 7-3

7.7 PROCESSING SPEED..7-3

Programmer’s Reference
Version 1.0

7.1 Introduction
This chapter describes NM6403 Instruction Level Simulator, its
interface, its command line options and execution modes. Below in this
manual NM6403 Instruction Level Simulator is referred to as the
simulator.

7.2 About NM6403 Simulator
The simulator is used to simulate the operation of NM6403. The
simulator executes the user program code likewise NM6403 but it
doesn’t simulate run-time characteristics. A result of an execution any
user program by simulator is the same as by NM6403. The simulator is
the command line application.

7.3 Invocation of Simulator
To invoke the simulator, enter:
emurun [options] file_name

The user is allowed to specify one executive file with command line
options. If the simulator is invoked without input filename, it returns the
list of options and all necessary reference information. The simulator
outputs information to the standard output.

Example: emurun Myapp.abs

7.4 Simulator’s Options
The following options control the operation of the simulator:

Table 7-1. List of Simulator’s Options
Option Description

-S The simulator checks parity of the stack pointer (ar7).
-B The simulator checks silicon bugs.

-m<value> This option set a memory bank size (64000x32 bits by
default).

IInnssttrruuccttiioonn LLeevveell SSiimmuullaattoorr

7-2 Programmer’s Reference
Version 1.0

7.4.1 Checking Parity of the Stack Pointer (option -S)
The option -S turns on checking parity of the stack pointer (register
ar7). One of the NM6403 features is that variables occupying 64 bits
cannot be arranged by memory odd addresses. At interruption processing
register pair PC,PSW is written into the stack therefore the stack pointer
in user program when interrupt is enabled must be aligned to the
border of a 64-bits word and be even.

At delayed jump, the stack pointer may be odd actually when interrupt is
enabled because interrupt processing occurs just before the execution of
all delayed instructions.

7.4.2 Checking Silicon Bugs (option -B)
The option -B sets the checking of the silicon bugs which have been
arisen from realization of processor. If the simulator happens on a silicon
bug, it types a message.

Only the fourth bug of the scalar processor is diagnosed. The silicon bugs
of the vector processor are not detected.

7.4.3 Memory Size Option -m
The option -m sets the memory bank size. It dimensions in short words.
The minimum size equals 64000 of 32-bit words (it sets by default). The
key -m defines the size of one simulated memory bank, but the size is the
same for all four banks. Therefore, a total memory size is four times
lager.

Example: emurun Myapp.abs –m128000

7.5 Memory Configuration
The simulator has four memory banks of the equal size, which are
arranged from next initial address:

• 00000000 – bank 0 of local memory;

• 40000000 – bank 1 of local memory;

• 80000000 – bank 0 of global memory;

• с0000000 – bank 1 of global memory.

The size of banks may be changed by option ‘-m‘.

The memory access time memory equals to one cycle.

7.6 User Program Requirements
User program must conform to the memory configuration of the
simulator.

IInnssttrruuccttiioonn LLeevveell SSiimmuullaattoorr

7-3Programmer’s Reference
Version 1.0

7.6.1 Breakpoint
By convention for the simulator, the address of the breakpoint is equal to
<entry point>+6. The returned value considered the register gr0 value.
C++ program uses the start-up code from the run-time library and
answers to the requirements automatically.

7.7 Processing Speed
The processing speed depends on user hardware and its capacity. On PC
with Pentium II 300 MHz by control Windows’95 without background
user processes the processing speed amounts to 300000 scalar
instructions per second and 100-10000 vector instructions per second.
The processing rate of the vector instructions strongly depends on vector
commands itself.

Programmer’s Reference
Version 1.0

8 Accurate Cycle Simulator

8.1 INTRODUCTION ..8-1
8.2 ABOUT NM6403 CYCLE SIMULATOR ..8-1
8.3 INVOCATION OF CYCLE SIMULATOR..8-1
8.4 CYCLE SIMULATOR’S OPTIONS...8-2
8.4.1 Output Option: -l, -s, -b ... 8-2
8.4.2 Memory Size Option -m ..8-2

8.5 MEMORY CONFIGURATION ...8-2
8.6 USER PROGRAM REQUIREMENTS...8-3
8.6.1 Breakpoint... 8-3

8.7 PROCESSING SPEED..8-3
8.8 EXAMPLES OF TRACE OUTPUT ...8-4
8.8.1 Trace Analysis of Events on Peripheral Buses of NM6403 ..8-4
8.8.2 Trace Analysis of Execution of User Program ..8-5

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

Programmer’s Reference
Version 1.0

8.1 Introduction
This chapter describes NM6403 Cycle Accurate Simulator, its interface,
its command line options and execution modes. Below in this manual
NM6403 Cycle Accurate Simulator is referred to as the cycle simulator.

8.2 About NM6403 Cycle Simulator
The cycle simulator is intended to simulate the operation of NM6403 and
characterization the run time of user programs. The cycle simulator
executes the user program code likewise NM6403. Moreover it simulates
run-time characteristics such as varies delays. However the memory
access time is fixed, and equals to one cycle. A result of the execution
any user program by cycle simulator is the same as by NM6403. A
difference between the run time on simulator and NM6403 maybe exists
only for a fragment of the user program, which depends on the pipeline
and the memory access time. The cycle simulator is the command line
application.

8.3 Invocation of Cycle Simulator
To invoke the cycle simulator, enter:
temu [options] file_name

The user is specifying one executive file with command line options. If
the cycle simulator is invoked without input filename, it provides the list
of options and all necessary reference information.

Example: temu –l –s -b Myapp.abs

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

8-2 Programmer’s Reference
Version 1.0

8.4 Cycle Simulator’s Options
The following options control the operation of the cycle simulator:

Table 8-1. List of Cycle Simulator’s Options
Option Description

-l<file_name> This option specifies a file name of execution trace.
-s<file_name> This option specifies a file name of execution

statistics.
-b<file_name> This option specifies a file name of global bus

event trace.
-m<value> This option set a memory bank size (256Kx32 by

default).

8.4.1 Output Option: -l, -s, -b

• -l option sets a file name of execution trace;

• -s option sets a file name of execution statistics;

• -b option sets a file name of global bus event trace.

If the option is absent, the respective information returned to the
standard output. If the option placed without a file name, the information
doesn’t output.

8.4.2 Memory Size Option -m
The option ‘-m’ sets the memory bank size. It dimensions in short words.
The minimum size equals 262144 of 32-bit words (set by default). The
key ‘-m’ defines the size of one simulated memory bank, but the size is
the same for all four banks. Therefore a total memory size is four times
lager.

8.5 Memory Configuration
The cycle simulator has four memory banks of the equal size, which are
arranged from next initial address:

• 00000000 – bank 0 of local memory;

• 40000000 – bank 1 of local memory;

• 80000000 – bank 0 of global memory;

• с0000000 – bank 1 of global memory.

The size of bank may be changed by option ‘-m‘.

The memory access time for memory equals to one cycle.

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

8-3Programmer’s Reference
Version 1.0

8.6 User Program Requirements
User program must conform to the memory configuration of the cycle
simulator.

8.6.1 Breakpoint
By convention for the cycle simulator the address of the breakpoint is
equal to <entry point>+6. The returned value considered the register gr0
value. C++ program uses the start-up code from the run-time library and
answers to the requirements automatically.

8.7 Processing Speed
The processing speed depends on user hardware and its capacity. On PC
with Pentium II 300 MHz by control Windows’95 without background
user processes the processing speed amounts to 300000 scalar
instructions per second and 100-10000 vector instructions per second.
The processing rate of the vector instructions strongly depends on vector
commands itself.

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

8-4 Programmer’s Reference
Version 1.0

8.8 Examples of Trace Output

8.8.1 Trace Analysis of Events on Peripheral Buses of NM6403

Table 8-2. Trace Output of Events on Peripheral Bus
Local Bus 00000000-

7FFFFFFF
Global Bus 80000000-

FFFFFFFF
Tick

Number

High
Word

Low
Word

F
l
a
g

Address
on Local

Bus
High
Word

Low Word F
l
a
g

Address
on Global

Bus

Processor
Internal

Bus
Occupation

Type

 1 00000008 48270000, r 00000000 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 2 50100000 50100000, r 00000002 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 3 zzzzzzzz zzzzzzzz, z zzzzzzzz zzzzzzzz zzzzzzzz, z zzzzzzzz

 4 000001a2 4bd70000, r 00000008 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 5 zzzzzzzz zzzzzzzz, z zzzzzzzz zzzzzzzz zzzzzzzz, z zzzzzzzz

 6 00000016 4a270000, r 0000000a zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 7 50100000 50100000, r 0000000c zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 8 zzzzzzzz zzzzzzzz, z zzzzzzzz zzzzzzzz zzzzzzzz, z zzzzzzzz

 9 00000302 4a100000, r 00000016 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 10 ffffffff ffffffff, w 000001a2 zzzzzzzz zzzzzzzz, z zzzzzzzz, OUTPUT

 11 00000000 0000000c, w 000001a2 zzzzzzzz zzzzzzzz, z zzzzzzzz, OUTPUT

 12 80000000 4b140000, r 00000018 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 13 9f13e000 9c13f518, r 0000001a zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 14 zzzzzzzz zzzzzzzz, z zzzzzzzz zzzzzzzz zzzzzzzz, z zzzzzzzz

 15 9f13e000 9c13f518, r 0000001c zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 16 e8dbcec1 b4a79a8d, r 00000302 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 17 9f13e000 9c13f518, r 0000001e zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 18 50433629 1c0f02f5, r 00000304 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 19 50361c02 e8ceb49a, r 00000306 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 20 2006ecd2 b89e846a, r 00000308 zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 21 b8916a43 1cf5cea7, r 0000030a zzzzzzzz zzzzzzzz, z zzzzzzzz, INPUT

 22 f0c9a27b 542d06df, r 0000030c e8dbcec1 b4a79a8d, w 80000000, INPUT, OUTPUT

 23 20ecb884 501ce8b4, r 0000030e 50433629 1c0f02f5, w 80000002, INPUT, OUTPUT

 24 c08c5824 f0bc8854, r 00000310 50361c02 e8ceb49a, w 80000004, INPUT, OUTPUT

 25 884706c5 844302c1, r 00000312 2006ecd2 b89e846a, w 80000006, INPUT, OUTPUT

 26 904f0ecd 8c4b0ac9, r 00000314 b8916a43 1cf5cea7, w 80000008, INPUT, OUTPUT

 27 f0a25406 b86a1cce, r 00000316 f0c9a27b 542d06df, w 8000000a, INPUT, OUTPUT

 28 6012c476 28da8c3e, r 00000318 20ecb884 501ce8b4, w 8000000c, INPUT, OUTPUT

 29 58fda247 ec9136db, r 0000031a c08c5824 f0bc8854, w 8000000e, INPUT, OUTPUT

 30 30d57a1f c4690eb3, r 0000031c 884706c5 844302c1, w 80000010, INPUT, OUTPUT

 31 c058f088 20b850e8, r 0000031e 904f0ecd 8c4b0ac9, w 80000012, INPUT, OUTPUT

 32 009830c8 60f89028, r 00000320 f0a25406 b86a1cce, w 80000014, INPUT, OUTPUT

 33 28b33ec9 54df6af5, r 00000322 6012c476 28da8c3e, w 80000016, INPUT, OUTPUT

 34 d05be671 fc87129d, r 00000324 58fda247 ec9136db, w 80000018, INPUT, OUTPUT

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

8-5Programmer’s Reference
Version 1.0

When there are not events on the bus (bus is in the third state) ‘zzzzzzzz’
is output into the trace. It is used next notation convention in trace for
flags:

• r – reading from memory;

• w – writing into memory;

• z – no operation (bus is in the third state).

Names of occupied buses are printed in last column of trace.

8.8.2 Trace Analysis of Execution of User Program
The example of an execution trace and comments are presented below.

Example of execution trace
193 tick, Addr:80004467 ;rep 1 nul ,wtw with nul

194 tick, Addr:80004462 ;rep 32 data = [ar4++gr4] ,ftw with vsum 0,
data, afifo

195 tick, Addr:80004463 ;rep 8 wfifo = [ar0++] with nul

197 tick, Addr:800044f8 Delay executing for 1 tick(s)

8 ticks ar0-ar3 address unit are busy

196 tick, Addr:80004464 Delay decoding for 8 tick(s)

204 tick, Addr:80004464 if !(N|Z) goto gr2;gr0 = gr0-1

205 tick, Addr:80004465 nul;gr6 = gr6+gr5 noflags

20 ticks ar4 used in long operation

206 tick, Addr:80004466 Delay decoding for 20 tick(s)

226 tick, Addr:80004466 ar4=gr6 set; nul

227 tick, Addr:80004467 ;rep 1 nul ,wtw with nul

228 tick, Addr:80004468 ar0=8000 4488 set; nul

230 tick, Addr:00000000 Delay executing for 1 tick(s)

229 tick, Addr:8000446a Delay loading for 1 tick

230 tick, Addr:8000446a ;rep 32 data = [ar4++gr4] ,ftw with vsum 0,
data, afifo

231 tick, Addr:8000446b ;rep 8 wfifo = [ar0++] with nul

233 tick, Addr:80004488 Delay executing for 1 tick(s)

232 tick, Addr:8000446c nul;gr6 = gr6+gr5 noflags

7 ticks weight bus is busy

22 ticks ar4 used in long operation

233 tick, Addr:8000446d Delay decoding for 29 tick(s)

262 tick, Addr:8000446d ar4=gr6 set; nul

Normal Instruction

Tick
Number

Instruction
Address

Disassembled Instruction.

193 tick, Addr:80004467 ;rep 1 nul ,wtw with nul

AAccccuurraattee CCyyccllee SSiimmuullaattoorr

8-6 Programmer’s Reference
Version 1.0

Delays at Execution

Tick
Number

Address of Delayed
Instruction

Delay Class and Delay Time

206 tick, Addr:80004466 Delay decoding for 20 tick(s)

Interpretation of Reason of Delay at Execution

Amounts of Delayed
Tick

Reason of Delay

20 ticks ar4 used in long operation

Classes of Delays

Message which is

output in execution
trace

Class of Delay Address Meaning

delay loading Delay at fetching the
instruction

Address of the
fetched instruction

delay jump Waiting for the fetching
and(or) the execution of
the delay slot instructions
before the jump

Address of the jump
instruction

delay decoding Delay of the instruction
decoding. Instruction can
not be execute because of
the resources of the
processor is busy.

Address of the
delayed instruction

delay
executing

Blocking of command in
pipeline because of
conflict with others
command. Mostly conflict
appears at memory access.

Address of memory
access, which delays
because of blocking

Address equals to 0
if the reason of
blocking isn’t
concerning with
memory access

®

©RC Module, 1999-2006

All rights reserved.

Neither the whole nor any part of the information contained in, or the
product described in this overview may be adapted or reproduced in
any form except with the prior written permission of the copyright
holder.

RC Module reserves the right to make changes without further notices
to product herein to improve reliability, function or design. RC
Module shall not be liable for any loss or damage arising from the use
of any information in this overview or any error or omission in such
information, or any incorrect use of the product.

Research Centre Module
Box: 166, Moscow, 125190, Russia
Tel: +7 (095) 152-9335
Fax: +7 (095) 152-4661
E-Mail: nm-support@module.ru
WWW: http://www.module.ru

Printed in Russia Data of issue: February 21, 2006

	 Software Development Kit Overview
	1.1 NM6403 Software Development Flow
	1.2 Structure of SDK Directories
	1.3 NEURO Environment Variable

	 C++ Compiler
	2.1 Introduction
	2.2 About NM6403 C++ Compiler
	2.3 Getting Started With the Compiler
	2.4 Compiling C++ Code
	2.5 Invoking the C++ Compiler
	2.6 Specifying Filenames
	2.7 Compiler Options
	2.7.1 Delivery of Reference Information (-help or -? Option)
	2.7.2 Service Options (prefix -S)
	2.7.2.1 Keeping Intermediate Files (-Skeeptemps and -Stmp)
	2.7.2.2 Printing Out Expanded Invoking Conditions (- Snoexec Option)
	2.7.2.3 Disabling Linker (- Snolink Option)
	2.7.2.4 Checking C++ Source Syntax (-Ssyntax Option)

	2.7.3 C++ Compiler Options
	2.7.3.1 Creating Debug Information (-g Option)
	2.7.3.2 Adding Directories for Header Files and Libraries Search (-I and -L Options)
	2.7.3.3 Front-end Compilator Options (-Xargument Options)
	2.7.3.4 Preprocessor Options (-D, -U, -T, -C Options)

	2.7.4 Assembler Options
	2.7.4.1 Generating an Assembly Listing File (-l Option)
	2.7.4.2 Generating a Cross-Reference Listing File (-x Option)

	2.7.5 Linker Options
	2.7.5.1 Defining Output File Name (-o Option)
	2.7.5.2 Supplying a Memory Configuration File Name (-c Option)
	2.7.5.3 Generating a Memory Map File (-m Option)
	2.7.5.4 Supplying a Linker Command File Name (- @ Option)

	2.8 The nmcc Default Configuration
	2.8.1 List of Components Default Options
	2.8.2 Default Output File Name

	2.9 Example of Invoking nmcc
	2.10 The nmcc Shell Error Messages
	2.11 Characteristics of NM6403 C++
	2.11.1 Standard Data Types
	2.11.2 Identifiers and Character Set
	2.11.3 Data Types Range (limits.h and float.h)

	1
	 Assembler
	3.1 Introduction
	3.2 About Assembler
	3.3 Assembler Development Flow
	3.4 Invoking the Assembler
	3.5 Assembler Options Summary
	3.6 General Options
	3.6.1 Printing Out Reference Information (-h, -? Options)
	3.6.2 Disabling Output Information (-q and -i Options)
	3.6.3 Printing Out the Banner (-t Option)
	3.6.4 Displaying the Assembler Pathname (-p Option)

	3.7 Output File Types
	3.7.1 Setting the Output File (-ofilename Option)
	3.7.2 Creating an Assembly Listing File (-I Option)
	3.7.3 Creating a Cross-References File (-х Option)

	3.8 Macro Librarian Mode
	3.8.1 How to Use the Assembler as the Macro Librarian (-m[macrolib] Option)
	3.8.2 Adding Macros to a Macro Library (-a Option)

	3.9 Controlling the Assembler Warning Messages
	3.9.1 Controlling Warnings Output by Their Numbers (-W[+|-]<num> Option)
	3.9.2 Controlling Group of Warnings (-W[+|-]group Option)

	3.10 Error Messages
	3.10.1 Warnings
	3.10.2 Errors
	3.10.3 Internal and Fatal Errors

	1
	 Linker
	4.1 Introduction
	4.2 Linker Overview
	4.2.1 Main Features
	4.2.2 Adjustment to Various Memory Configurations
	4.2.3 Output File Types
	4.2.4 Linker Return Value

	4.3 Linker Development Flow
	4.4 Invoking the Linker
	4.5 Linker Options Summary
	4.6 General Options
	4.6.1 Printing Out Reference Information (-h, -? Options)
	4.6.2 Suppressing Progress Information (-q[n][=filename] Option)
	4.6.3 Displaying the Banner (-t Option)
	4.6.4 Printing Out the Linker’s Location (-p Option)
	4.6.5 Setting Output File Name (-ofilename Option)
	4.6.6 Using a Command File (@filename Option)

	4.7 Output File Types Description
	4.7.1 Creating an Absolute Executable File (-abs or -a Option)
	4.7.2 Creating a Relocatable Executable File (-rel или -r Option)
	4.7.3 Creating an Object File (-elf or -e Option)

	4.8 Specific Options
	4.8.1 Removing an Unused Sections and Debug Information (-d4 Option)
	4.8.2 Keeping Debug Information (-d{1..3} Option)
	4.8.3 Keeping All Data in an Optput File (-d0 Option)
	4.8.4 Defining Memoty Heap Size (-heap и -heap1 Options)
	4.8.5 Defining System Stack Size (-stack=size Option)
	4.8.6 Defining the Entry Point (-start=label Option)
	4.8.7 Disabling Initialization of Static Global Objects (-asm Option)
	4.8.8 Defining Library Search Path (-l (lowercase "L") Option)
	4.8.9 Name the Memory Map File (-mfilename Option)
	4.8.10 Supplying the Configuration File Name (key -c<file_name>)
	4.8.11 Setting the Default Segment Address (-addr=address Option)

	4.9 Default Options
	4.10 Correct and Incorrect Option Combinations
	4.11 Configuration file
	4.11.1 MEMORY Section
	4.11.1.1 Reserved Names for Memory Banks
	4.11.1.2 Memory Default Pattern

	4.11.2 SEGMENTS Section
	4.11.2.1 Distribution of Segments Within the Limits of Memory Bank.

	4.11.3 SECTIONS Section
	4.11.3.1 How to Name Data Sections

	4.12 An Example of Using the Linker
	4.13 Linker Error Messages
	4.13.1 Warnings
	4.13.2 Errors
	4.13.3 Fatal Errors

	1
	 Librarian
	5.1 Introduction
	5.2 Librarian Features
	5.3 Librarian Development Flow
	5.4 Invoking the Librarian
	5.5 Librarian Options
	5.5.1 Creating the Library (-c Option)
	5.5.2 Adding Files to the Library (-a Option)
	5.5.3 Replacing Files in the Library (–r Option)
	5.5.4 Deleting Files from the Library (-d Option)
	5.5.5 Extracting Files from the Library (-e Option)
	5.5.6 Viewing the Content of the Library (-l Option)
	5.5.7 Printing Out Reference Information (-h/-? Option)

	5.6 Using the Command File
	5.7 Using Wildcards
	5.8 Examples of Invoking the Librarian
	5.9 An Example of Using the Librarian
	5.9.1 Creating the Library
	5.9.2 Adding Object Files to the Library
	5.9.3 Extracting Object Files from the Library
	5.9.3.1 Extracting All Files from the Library

	5.9.4 Replacing a File in the Library
	5.9.5 Deleting a File from the Library

	5.10 Librarian Error Messages
	5.10.1 Warnings
	5.10.2 Errors
	5.10.3 Fatal Errors

	 Decoder of Object and Executable Files
	6.1 Introduction
	6.2 The Dumper Overview
	6.3 Invoking the Dumper
	6.4 The Dumper Options
	6.5 Processing Special Sections
	6.6 An Example of the Decoded ELF File

	7 Instruction Level Simulator
	7.1 Introduction
	7.2 About NM6403 Simulator
	7.3 Invocation of Simulator
	7.4 Simulator’s Options
	7.4.1 Checking Parity of the Stack Pointer (option -S)
	7.4.2 Checking Silicon Bugs (option -B)
	7.4.3 Memory Size Option -m

	7.5 Memory Configuration
	7.6 User Program Requirements
	7.6.1 Breakpoint

	7.7 Processing Speed

	8 Accurate Cycle Simulator
	8.1 Introduction
	8.2 About NM6403 Cycle Simulator
	8.3 Invocation of Cycle Simulator
	8.4 Cycle Simulator’s Options
	8.4.1 Output Option: -l, -s, -b
	8.4.2 Memory Size Option -m

	8.5 Memory Configuration
	8.6 User Program Requirements
	8.6.1 Breakpoint

	8.7 Processing Speed
	8.8 Examples of Trace Output
	8.8.1 Trace Analysis of Events on Peripheral Buses of NM6403
	8.8.2 Trace Analysis of Execution of User Program

