
®

NNMM66440033 SSooffttwwaarree DDeevveellooppmmeenntt KKiitt

AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

Written by Mikhail Zabaluev

2 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

CCoonntteennttss

INTRODUCTION ...3
BRIEF DESCRIPTION OF NEURAL NETWORK FUNCTIONING.......................................4
IMPLEMENTATION OF THE NEURAL NET PROCESSING ON NM6403..........................5

CALCULATION OF WEIGHTED SUMS...5
CALCULATION OF THRESHOLD FUNCTION ..6

C++ PROGRAM INTERFACE AND STRUCTURE..8
PERFORMANCE MEASUREMENT ..11
LITERATURE...12

3AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

 IInnttrroodduuccttiioonn

This document covers the software implementation of a neural network on
the NeuroMatrix® NM6403 processor [1]. The program is provided as an
example. One of its goals is to show the effective approach to implement the
neural networks functionality on NM6403 processor; the other is to measure
the processor's performance in the tasks of such class. The sample neural net
[4], the two-layered perceptron that is processed in forward-propagation
scheme, has the following parameters:

• the net has got 12 inputs, one hidden layer of certain (about hundreds)
number of neurons and the output layer of 12 neurons;

• input and output values of the neurons are represented as 64-bit signed
integers;

• weight coefficients of the neurons are represented as 16-bit signed
integers, packed in fours into 64-bit words;

• the output characteristic of a neuron (that is, the dependence of the output
value from a weighted sum of the inputs) is defined as an integer
function with a non-linear (sigmoid) real prototype, whose output values
lay in range from -32767 to 32767. At the argument values less than
-32768 or greater than 32767, the function takes the margin values,
accordingly -32767 or 32767.

The computational performance of the program is the subject of
measurement. All the time-critical procedures are written in assembly
language and have been hand-optimized for maximum processing speed.

4 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

BBrriieeff ddeessccrriippttiioonn ooff nneeuurraall nneettwwoorrkk ffuunnccttiioonniinngg

A multilayered perceptron-like neural net consists of several layers of
uniform neurons (Fig. 1). A neuron can be represented as a numeric (scalar)
function of a vector of numeric input values. The neuron output is
calculated as follows: the input values are multiplied by corresponding
weight coefficients and these products are added together. The obtained sum
is used as an argument for certain function, called threshold function or
activation function, to obtain the neuron's output value. As a rule, this
function is chosen non-descending and bound in output value to a certain
range. In order to achieve better trainability when using gradient methods,
the function (or its real-value prototype in case of discrete values) is often
chosen to be smooth and non-linear. The neurons of the same layer of
perceptron share one vector of inputs. Tuning of weight coefficients called
training changes the network output behavior.

Fig. 1. The scheme of a neural network layer

… …

Input
vector

Layer of
neurons

o
u
t
p
u
t
s

…

×

×

×

x1

x2

xm

w11

w12

w1m

+

inputs weights

output

5AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

IImmpplleemmeennttaattiioonn ooff tthhee nneeuurraall nneett pprroocceessssiinngg oonn NNMM66440033

Calculation of weighted sums

The vector-processing unit of the NeuroMatrix®NM6403 processor [1] is
designed to execute a weighted summation (in fact, the vector-by-matrix
product), which is a common operation for matrix calculations. In our
example, the configuration of the Active Matrix of NM6403 is one column
and four rows filled with 64-bit words of input data:
rep 4 wfifo = [ar4++], ftw;

...

wtw;

The corresponding chunks of weights matrix of four 16-bit values packed
into 64-bit word are multiplied by these values with respect to sign. The
four products are summed to a 64-bit value that is added to the already
accumulated sum (Fig.2). These four multiplications and the summation of
five values are performed during one step of vector operation which, being
multi-step, calculates several (up to 32) such partial sums for several
neurons due to the fact that the input vector is the same for every neuron in
the hidden layer:
rep 32 data = [ar0 += gr0] with vsum ,data, 0;

(for the first four input values),
rep 32 data = [ar0 += gr0] with vsum ,data, afifo;

(for the forthcoming input values, adding accumulated sums left by the
previous such operation in the results queue).

Fig.2. The weighted sums calculation scheme
i

x1

x2

x3

x4

w11

×

6 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

w12 w13 w14 w15 w16 w17 w18 w19 ...
w21 w22 w23 w24 w25 w26 w27 w28 w29 ...
w31 w32 w33 w34 w35 w36 w37 w38 w39 ...
...

weights matrix

n
p
u
t
s

s
u
m
s

+

×
×
×

x5

x6

x7

x8

w11 w12 w13 w14 w15 w16 w17 w18 w19 ...
w21 w22 w23 w24 w25 w26 w27 w28 w29 ...
w31 w32 w33 w34 w35 w36 w37 w38 w39 ...
...

weights matrix

i
n
p
u
t
s

s
u
m
s

+

×
×
×
×

+

s1
(1)

w11

w12

w13

w14

w15

w16

w17

w18

s1
(2)

In order to avoid overheads for saving and restoring of partial sums from
memory, the sums of all the neurons processed by one such operation are
added to the result of the next iteration and do not leave the vector device.
Thus, consequently changing fours of input values in the multiplier matrix1,
complete weighted sums are calculated for, say for certainty, 32 neurons.
During the next iteration, the sums of 32 more neurons are calculated, and
so on until the neurons of the whole layer are processed.

Calculation of threshold function
One would note that the threshold function becomes nearly constant for the
arguments with large magnitude. Therefore we can select a range of integer
argument values and retrieve function values within this range from a table.
The arguments that are out of the range deliver the marginal function
values. The hardware saturation function that is implemented in
NeuroMatrix® NM6403 is suitable to truncate values to the range:
rep 32 with activate afifo + 0;

The control register f1cr is initialized such that saturation function replaces
the values that are less than -32768 or greater than 32767 with -32768 or
32767 accordingly, and leaves the values from -32768 to 32767 unchanged.
After hardware saturation is applied we use table of 65536 numbers to

1 Matrix loading is an expensive operation but it has to be performed in order to avoid more
serious expenses for the saving/restoring of partial sums; plus, it mostly executes in parallel
with weighted summation.

retrieve function values corresponding to all the possible arguments. The
table is filled with sigmoid function values converted to integers:

f
e
e

t
xt

t= ⋅
−
+

= −32767
1
1 2048

,

, where x runs the range from -32768 to 32767.

7AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

8 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

CC++++ pprrooggrraamm iinntteerrffaaccee aanndd ssttrruuccttuurree

The evaluation of the neural network is implemented in three procedures,
which have been implemented in the assembly language [2, 3], with C-
callable interface. They are called by the main C++ program routine. The
C++ prototypes of these calls along with the descriptions of their work are
listed below.
void SumLayer (size_t nInput, size_t nNeurons,
 const long *input,
 const unsigned long *weights,
 long *output);

This procedure calculates a vector of weighted sums for a neuron layer of
arbitrary dimension. The accumulated sums are then truncated to the range
-32768…32767 by the hardware saturation function. The nNeurons
parameter gives the number of neurons in the layer, nInput gives the
number of layer's inputs. The input pointer refers to an array of 64-bit
input values, weights points to the beginning of a matrix of 16-bit weights
packed by fours into 64-bit words, output points to an array of 64-bit
weighted sums calculated by this procedure. Due to the multi-step manner
of the vector instructions execution, there exist some alignment
requirements for sizes of arrays in memory. These requirements are met
with padding by zero elements if necessary. The size of the input array
should be at least nInput elements and be a multiple of four 64-bit words.
Each row of the 16-bit weight values (every such row contains weights of
one neuron) takes the whole number of 64-bit words; the number of these
rows, as long as the size of the output array, shall be at least nNeurons and
be a multiple of 32.
void SumLayer12 (size_t nInput,
 const long *input,
 const unsigned long *weights,
 long *output);

This procedure is similar to SumLayer except that the number of neurons
equals 12, so the parameter nNeurons is omitted. This performance-twisted
layer-specific version allows to get rid of the external loop that was used to
iterate packs of 32 neurons. Twelve-repetition operations are used to
calculate weighted sums. Accordingly, both the number of weight matrix
rows and the number of outputs are 12.
void ApplyNeuroFunc (size_t nInput,
 const long *input,
 long *output);

This procedure applies the threshold function to calculated weighted sums
of a neuron layer. The weighted sums, as mentioned above, are in the range
from -215 to 215-1. The table of 65536 values is used to calculate the
function result.

9AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

Listed below is the main() routine which procedures that implement the
neural net of particular configuration, along with used constants and
declarations.
 // number of neurons in the hidden layer
static const size_t nHidden = 1024;

extern "C" {
 long input[];
 long hidden[];
 long output[];
 unsigned long weights1[];
 unsigned long weights2[];
}

int main ()
{

 // initialize data

 Init();

 // get the starting clock value

 clock_t t1 = clock();

 // evaluate the sums of the first layer

 SumLayer(12, nHidden, input, weights1, hidden);

 // evaluate the outputs of the first layer

 ApplyNeuroFunc(nHidden, hidden, hidden);

 // evaluate the sums of the second layer

 SumLayer12(nHidden, hidden, weights2, output);

 // evaluate the outputs of the second layer

 ApplyNeuroFunc(12, output, output);

 // get the final clock value

 clock_t t2 = clock();

 // return elapsed processor clocks

 return t2 - t1;
}

The net consists of two layers. The first one called hidden has 12 inputs and
the neurons number defined by nHidden. The outputs of the hidden layer
are the inputs of the second, or output, layer, that consists of 12 neurons.
The number of cycles spent to calculate signal propagation through two
layers is measured using clock() function.

10 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

The main routine is contained in main.cpp file. Assembly sources of
functions described above are in layers.asm, their C++ prototypes are in
layers.h. The nfunctab.asm file contains the threshold function table. The
data.asm file contains declarations of data buffers that are used in the
program.

11AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

PPeerrffoorrmmaannccee mmeeaassuurreemmeenntt

Table 1 contains timing results returned by the program for two different
nHidden values. The program was run on NM6403 processor of dual-
processor NM1 board at 40 MHz.

Table 1. Time of signal propagation through the net for various sizes of the hidden
layer.

Number of neurons
in hidden layer

(nHidden)

Equivalent number
of element

multiplications

Number of
cycles
spent

Elapsed time
in milliseconds

512 12288 13150 0.33 msec

1024 24576 25800 0.65 msec

12 AApppplliiccaattiioonn RReeppoorrtt
Neural network performance evaluation test

LLiitteerraattuurree

1. RC Module. NeuroMatrix® NM6403. Architectural overview.
http://www.module.ru/files/archover.pdf

2. RC Module. NeuroMatrix® NM6403 SDK. Assembly language
overview (preliminary version).

3. RC Module. NeuroMatrix® NM6403 SDK. Programmer's guide
(preliminary version).

4. Fausett, L. Fundamentals of Neural Networks: Architectures,
Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall,
1994, ISBN 0-13-334186-0.

13AApppplliiccaattiioonn RReeppoorrtt

Neural network performance evaluation test

®

©RC Module, 1999
 All rights reserved.

Neither the whole nor any part of the information contained in, or the
product described in this overview may be adapted or reproduced in
any form except with the prior written permission of the copyright
holder.

Research Centre Module
Box: 166, Moscow, 125190, Russia
Tel: +7 (095) 152-9335

RC Module reserves the right to make changes without further notices
to product herein to improve reliability, function or design. RC
Module shall not be liable for any loss or damage arising from the use
of any information in this overview or any error or omission in such
information, or any incorrect use of the product.

Fax: +7 (095) 152-4661
E-Mail: postmast@module.ru
WWW: http://www.module.ru

Printed in Russia Release date: 1999 March, 29

	 Introduction
	Brief description of neural network functioning
	Implementation of the neural net processing on NM6403
	Calculation of weighted sums
	Calculation of threshold function

	C++ program interface and structure
	Performance measurement
	Literature

