БИС 1879ВА1Т

Универсальная связная машина (терминал) мультиплексного канала обмена по ГОСТ Р 52070-2003 (ГОСТ 26765.52-87) /MIL-STD-1553B

Краткое техническое описание Версия 1.0

Основные особенности

- Гибкий интегрированный интерфейс управляющего вычислителя (ЦП) с МКО по ГОСТ Р 52070-2003 (ГОСТ 26765.52-87) / MIL-STD-1553B с использованием внешних приемопередатчиков
- Режимы КШ, ОУ, МТ, совмещенного ОУ/МТ
- Внутреннее ОЗУ 4Кх16, расширяемое до 64Кх16 с использованием внешнего ОЗУ
- Гибкий интерфейс с ЦП и памятью:
- **ü** 8- или 16-разрядный буферизованный режим
- ü 16-разрядный «прозрачный» режим
- **ü** 16-разрядный режим с прямым доступом к памяти
- **ü** поддержка режима без ожидания готовности
- Программируемый выбор тактовой частоты 16/12 МГц
- Расширенные функции КШ:
- **ü** автоматическое возобновление попытки передачи сообщений
- **ü** программируемые интервалы между сообщениями
- **ü** автоповтор кадров
- **ü** программируемый интервал ожидания ответного слова
- Расширенные функции ОУ:
- **ü** программируемое задание недопустимости команд
- **ü** работа в режимах одиночного сообщения, двойной буферизации, круговой буферизации
- **ü** настраиваемые прерывания
- **ü** гибкие возможности буферизации данных
- Расширенные функции МТ:
- **ü** режим словного монитора
- **ü** режим монитора избранных сообщений
- **ü** совмещенный режим ОУ и монитора сообщений
- **ü** запуск монитора по выбранному сообщению
- Номинал напряжения питания +3,3B, выходные логические уровни LVTTL, входные логические уровни LVTTL / LVCMOS / +5B TTL
- 80-выводной корпус типа LQFP, габариты 14 x 14 мм

Область применения

Сопряжение управляющего вычислителя с резервированным интерфейсом мультиплексного канала по ГОСТ Р 52070-2003 (ГОСТ 26765.52-87) / MIL-STD-1553В в авиационной, космической и специализированной аппаратуре различного функционального назначения; построение средств тестирования и отладки аппаратного и программного обеспечения систем управления, использующих МКО.

Описание

1879ВА1Т – универсальная связная машина, обеспечивающая гибкий интерфейс управляющего вычислителя (ЦП) с резервированным МКО по ГОСТ Р 52070-2003 (ГОСТ 26765.52-87) / MIL-STD-1553В с использованием внешних приемопередатчиков и функционирование в режимах контроллера шины (КШ), оконечного устройства (ОУ), монитора (МТ) или в совмещенном режиме ОУ/МТ.

1879ВА1Т объединяет в своем составе сдвоенный кодер/декодер, многопротокольную логику, логику управления, логику взаимодействия с ЦП и управления памятью, и 4К 16-разрядных слов внутреннего статического ОЗУ. 1879ВА1Т может использовать до 64К 16-разрядных слов внешнего статического ОЗУ в «прозрачном» режиме и в режиме работы с прямым доступом к памяти.

1879BA1T может быть напрямую подключена к 16- и 8-разрядным микропроцессорам в режиме разделения памяти, таким, как 680X0, i960, 80186, 8088, 6809, 8051, ADSP-2101, и другим.

Тактовая частота работы 1879BA1T выбирается программно из значений 16/12 MГп.

1879ВА1Т обеспечивает программируемые возможности работы с сигналом прерывания. Выходной сигнал запроса на обработку прерывания имеет три программно задаваемых режима работы: импульсный, уровнем напряжения, «очищаемым» программно, или уровнем напряжения, «очищаемым» после чтения регистра состояния прерываний.

При работе 1879ВА1Т в режиме КШ реализуются все виды сообщений по ГОСТ Р 52070-2003 / MIL-STD-1553B. Формат сообщения программируется индивидуально для каждого сообщения на основе управляющего слова КШ и состояния бита «прием/передача» соответствующего командного слова. Управляющее слово KIII определяет формат сообщения, канал выдачи (основной или резервный), маскирование слова ВСК и ответного слова ОУ, включение автоповтора и/или запроса на обработку прерывания для индивидуального сообщения. КШ осуществляет полную проверку достоверности слов и форматов сообщений, включая проверку интервала выдачи ответа, полярности и кодирования синхросигнала, бифазного кодирования, четности, количества битов, количества слов, адреса ОУ, а также наличия ошибок в формате «ОУ-ОУ». Интервал ожидания ответного слова программируется из значений 18, 22, 50 и 130 мкс, что позволяет использовать 1879ВА1Т при работе на длинных ЛПИ и/или на шинах с повторителями.

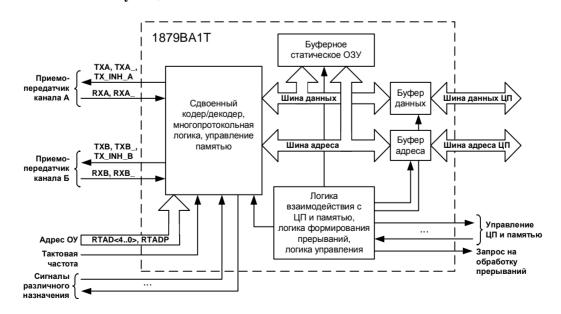
При работе 1879ВА1Т в режиме ОУ реализуются все виды сообщений и выполнение всех команд управления по ГОСТ Р 52070-2003 / MIL-STD-1553B. Логика режима ОУ выполняет полную проверку наличия ошибок, в том числе ошибок в формате «ОУ-ОУ», проверку достоверности слов и сообщений, и обеспечивает программное управление признаками ответного слова и значением слова ВСК ОУ, которые также могут формироваться логикой в реальном Другими ключевыми особенностями режима ОУ программируемый набор условий для формирования прерываний, внутреннее программирование недопустимых команд на подадресной программирование признака «Абонент занят», гибкость управления памятью – 1879ВА1Т реализует возможность работы ОУ в трех режимах: одиночного сообщения, двойной буферизации, круговой буферизации.

1879ВА1Т реализует три режима работы монитора: словный монитор, монитор избранных сообщений, совмещенный режим ОУ и монитора сообщений.

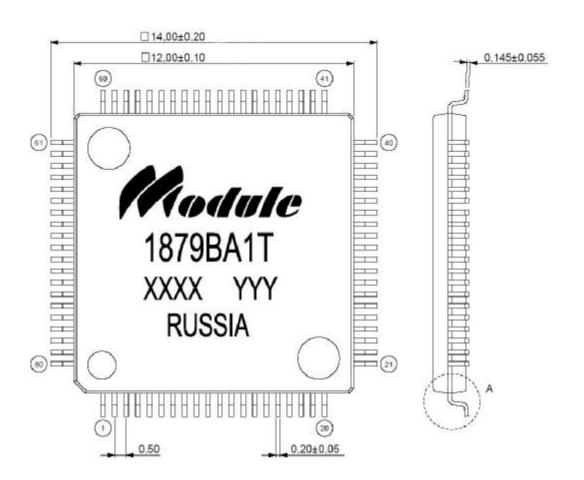
После инициализации режима словного монитора 1879ВА1Т осуществляет сбор всех принятых командных и ответных слов и слов данных. Для каждого принятого слова сохраняется информация о канале, по которому было принято слово, полярности синхросигнала, достоверности слова и временном интервале

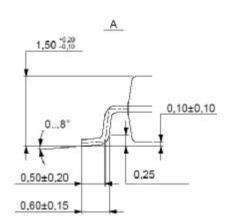
между словами. Слово срабатывания монитора обеспечивает дополнительную гибкость режима словного монитора: 1879BA1T имеет программируемые возможности запуска/останова монитора по выбранному слову и/или выдачи прерывания по приему выбранного слова.

Режим монитора избранных сообщений позволяет значительно уменьшить загрузку ЦП. В данном режиме производится выборочный прием сообщений, поступающих по резервированной шине, с возможностями фильтрации по адресу ОУ, признаку «прием/передача», подадресу в командном слове. Монитор избранных сообщений значительно упрощает работу управляющего программного обеспечения в части распознавания командных и ответных слов.


Монитор избранных сообщений может функционировать как пассивный монитор шины либо как монитор сообщений, совмещенный с ОУ. В совмещенном режиме ОУ/МТ 1879ВА1Т обеспечивает полнофункциональную работу в режиме ОУ с выделенным адресом и наблюдение за сообщениями в шине по остальным негрупповым адресам ОУ. Данный режим работы может иметь применение для реализации резервного контроллера шины.

1879ВА1Т имеет номинальное напряжение питания +3,3В, обеспечивает LVTTL совместимые выходные логические уровни, LVTTL / LVCMOS / +5В TTL совместимые входные логические уровни. 1879ВА1Т допускает подключение как приемопередатчиков, функционирующих по логическому интерфейсу Harris, так и приемопередатчиков, функционирующих по логическому интерфейсу Smiths.


1879ВА1Т выполнена в 80-выводном пластиковом корпусе типа LQFP с шагом между выводами 0,5 мм и имеет максимальные габариты 14,2 х 14,2 х 1,7 мм, что позволяет использовать ее в аппаратуре с жесткими требованиями по высоте компонентов.


Разработанные НТЦ «Модуль» устройства-прототипы терминалов МКО с использованием 1879ВА1Т и различных моделей приемопередатчиков прошли полное тестирование на соответствие требованиям ГОСТ Р 52070-2003 (ГОСТ 26765.52-87) / МІL-STD-1553В в испытательной лаборатории РКК «Энергия» им. С.П. Королева.

Функциональная схема

Габаритный чертеж

Примечания:

- размеры указаны в миллиметрах
- XXXX: дата изготовления (год, неделя)
- YYY: производственный код

Распределение сигналов по выводам БИС

Номер вывода	Наименование сигнала	Номер вывода	Наименование сигнала		
1	A13	41	INCMD*		
2	VSS	42	VSS		
3	A12	43	D00		
4	A11	44	D01		
5	A10	45	D02		
6	A09	46	D03		
7	A08	47	D04		
8	A07	48	D05		
9	A06	49	D06		
10	A05	50	D07		
11	MEMENA_OUT*	51	MEMOE*/ADDR_LAT		
12	VSS	52	VSS		
13	VDD	53	VDD		
14	A04	54	D08		
15	A03	55	D09		
16	A02	56	D10		
17	A01	57	D11		
18	A00	58	D12		
19	DTREQ*/16/8*	59	D13		
20	DTACK*/POLARITY_SEL	60	D14		
21	DTGRT*/MSB/LSB	61	D15		
22	VDD	62	VDD		
23	VSS	63	VSS		
24	MSTCLR*	64	MEMWR*/ZERO_WAIT*		
25	SSFLAG*/EXT_TRIG	65	RXA		
26	TAG_CLK	66	RXA_		
27	TRANSPARENT/BUFFERED*	67	TX_INH_A		
28	STRBD*	68	TXA		
29	SELECT*	69	TXA _		
30	MEM/REG*	70	TXB		
31	RD/WR*	71	TXB _		
32	CLOCK_IN	72	TX_INH_B		
33	VDD	73	VDD		
34	MEMENA_IN*/TRIGGER_SEL	74	RXB		
35	RTAD0	75	RXB _		
36	RTAD1	76	INT*		
37	RTAD2	77	READYD*		
38	RTAD3	78	IOEN*		
39	RTAD4	79	A15		
40	RTADP	80	A14		

Спецификация

Параметр	Min	Тур	Max	Ед. изм.
Предельный режим - Напряжение питания - Входное напряжение - Выходной ток	- 0,4 - 0,5 - 13		4,0 6,0 13	ВВмА
Питание - Напряжение питания (VDD) - Потребляемый ток	3,0	3,3	3,6 200	В
Нагрузочная емкость - Емкость нагрузки выхода и входа/выхода			50	пФ
Электрические параметры (VSS = 0B) - Входное напряжение высокого уровня - Входное напряжение низкого уровня - Входной ток утечки - Выходное напряжение высокого уровня - Выходное напряжение низкого уровня - Выходной ток	2,0 VSS - 10 VDD - 0,5 VSS - 4		5,5 0,8 10 VDD 0,4 4	В В мкА В В мА
Временные параметры - Задержка от запуска КШ до начала передачи - Программируемый интервал времени между сообщениями в режиме КШ - Программируемый разрешаемый интервал ожидания ответного слова ОУ (режимы КШ/ОУ/МТ): - номинал 18,5 мкс - номинал 22,5 мкс - номинал 50,5 мкс - номинал 128,0 мкс - задержка выдачи ответного слова ОУ - Интервал таймера блокировки	9,5 17,5 21,5 49,5 127,0 4,8	2,5	19,5 23,5 51,5 131,0 7,3	MKC MKC MKC MKC MKC MKC MKC
передачи		668		мкс
Конструктивные параметры - Габариты, не более - Масса, не более	14,2 x 14,2 x 1,7 0,47			ММ Г

Закрытое акционерное общество Научно-технический центр

Москва 125190 а/я 166 tel: +7 095 152-9698 fax: +7 095 152-4661 e-mail:rusales@module.ru http://www.module.ru

Напечатано в России Дата издания: декабрь 2004

НТЦ «Модуль» 2004 Все права сохранены Никакая часть информации, приведенная в данном документе, не может быть адаптирована или воспроизведена, кроме как согласно письменному разрешению владельцев авторских прав. НТЦ «Модуль» оставляет за собой право производить изменения как в описании, так и в самом продукте без дополнительных уведомлений. НТЦ «Модуль» не несет ответственности за любой ущерб, причиненный использованием информации в данном описании, ошибками или недосказанностью в описании, а также путем неправильного использования продукта. Модуль зарегистрированные торговые марки НТЦ «Модуль». Все остальные торговые марки принадлежат соответствующим владельцам.