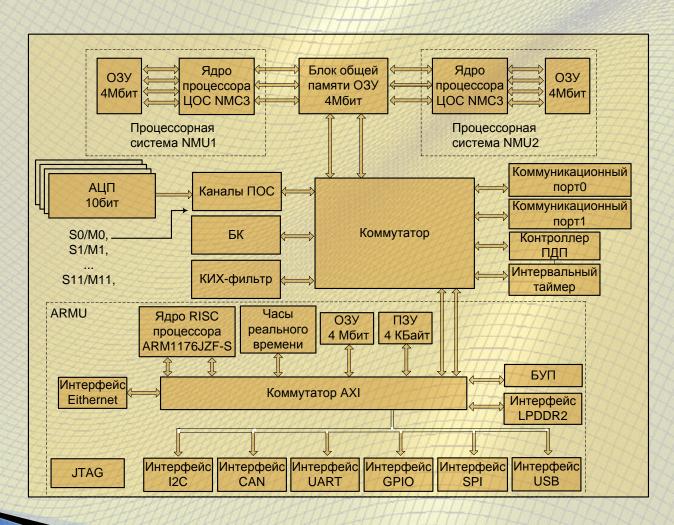


Универсальная элементная база СНК К1879ВЯ1Я К1888ВС018 области применения

Докладчик Ведущий инженер НТЦ «Модуль» Осипов Владимир Геннадьевич


(Todyan)

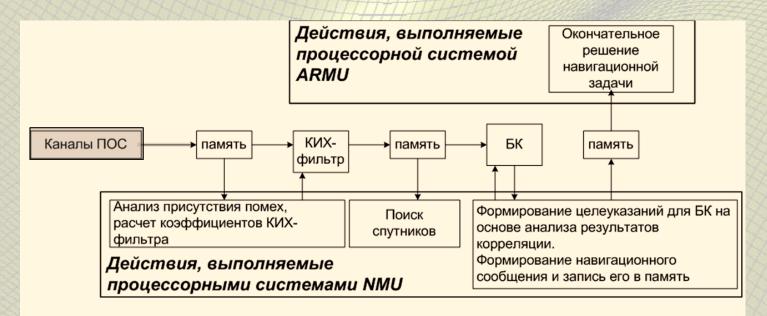
Система на кристалле К1879ВЯ1Я

Podysu)[®]

Система на кристалле К1888ВС018

Навигационный мультисистемный приёмник К1888BC018

- обработка до 8 частотных полос одновременно каналами DDC или более 8 спутниковых систем.
- ▶ 12 входов SIGN \MAGN 4 входа АЦП
- 16 канальный аппаратный коррелятор
- **▶** DSP NMC3 − 2шт.
- 16Мбит ОЗУ
- ARM1176 (с плавающей точкой).

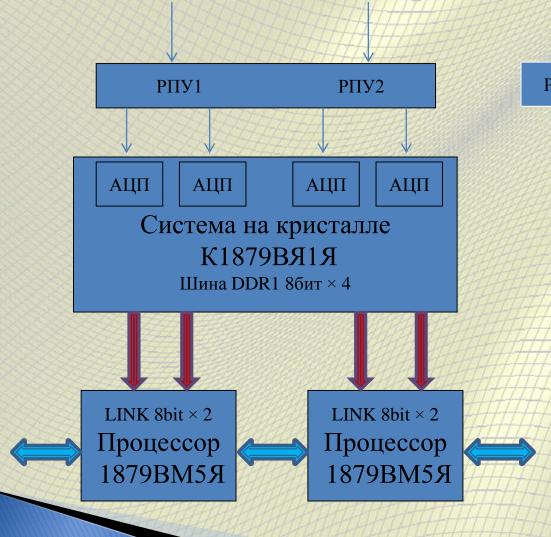


Навигационный мультисистемный высокопроизводительный приёмник

Навигационный мультисистемный приёмник с фильтрацией помех

Пример настройки каналов ПОС на частотные диапазоны

- 1) ГЛОНАСС L1;
- 2) GPS L1 + GALILEO E1 + SBAS/СДКМ;
- 3) BEIDOU L1;
- 4) GALILEO E6;
- 5) ГЛОНАСС L2;
- 6) GPS L2;
- 7) ГЛОНАСС L3 + GALILEO E5b;
- 8) GPS L5 + GALILEO E5a;

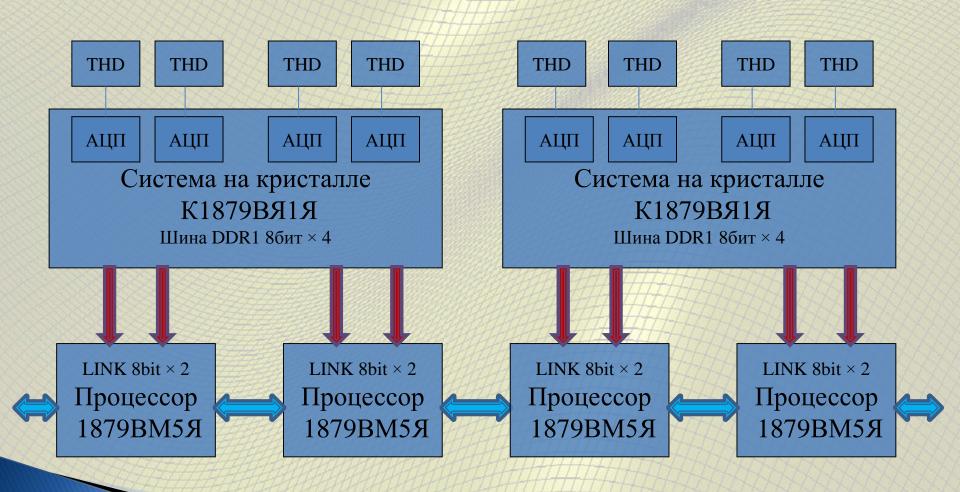


Радиолокационный приёмник

- Две пары комплементарных АЦП с частотой до 85МГц
- Реконфигурируемые КИХ фильтры 12 шт. по 64 точки
- DSP NMC3 2шт, 16Мбит ОЗУ, ARM1176

Процесс обмена данными в одной ячейке МЭ118.02

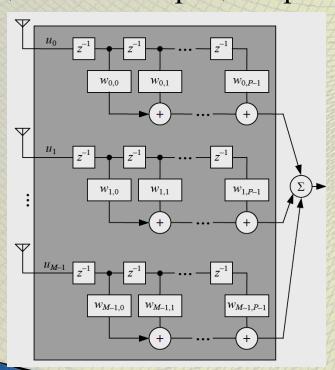
РПУ –Радиоприемное устройство


Rodyan

Радиолокационный приёмник в составе антенной решётки

- 4 канала АЦП 12Бит частотой дискретизации до 85МГц
- Полоса аналогового входа АЦП: до 200МГц К1879ВЯ1Я до 800МГц К1888ВС018
- Интерфейс 32бит DDR1 до 5,3 Гб/с, SPI
- DSP NMC3 2шт 16Мбит ОЗУ ARM1176
- Две пары комплементарных АЦП с частотой до 85МГц
- Реконфигурируемые КИХ фильтры 12 шт. по 64 точки
- DSP NMC3 2шт,16Мбит ОЗУ, ARM1176

Предложение по использованию в многоэлементных антеннах



•	Процессорная шина 64бита	7.45Gb/s
•	Процессорный LINK 8bit (ARM11в DDR1)	0.59Gb/s
•	Процессорный LINK 8bit (NMC3 в DDR1)	1.19Gb/s
•	DDR1 системы на кристалле	6.40Gb/s
•	4 АЦП упаковка 8бит	2.38Gb/s
•	4 АЦП упаковка 16бит	4.76Gb/s


Широкополосная адаптивная решётка с пространственной и временной обработкой

Однолучевая структура адаптивного процессора

Схема обработки К лучей

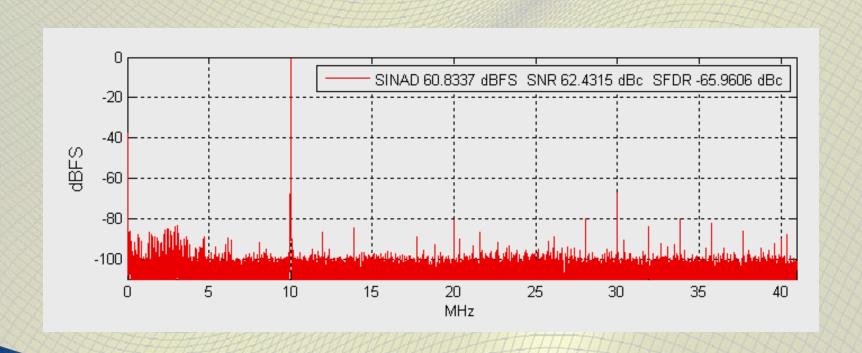
Пример системы зондирования поверхности выделены значения точности и полосы обработки [1]

13.17. Характеристики БРЛК «Смотр-SP»

	РСА-S, режимы работы				PCA-P
Параметры	ПР	MP	Пол	ММЛР	MP
Высота орбиты КА, км	500				
Наклонение орбиты	Определяется Заказчиком 9,4				
Длина волны РСА, см					69
Направление обзора		ассы			
Полоса обзора, км	2×500				2×250
Полоса съемки, км	5	1040	1060	500	60120
Разрешение, м:					
по азимуту	1	5	510	10	1530
по дальности	11,5	5	510	10	1530
Поляризация	вв/г/вг/гв	ВВ/ГГ/ВГ/ГВ	BB+ΓΓ+ +BΓ+ΓB	ГГ/ВВ/ГВ/ВГ	BB+ΓΓ+ +BΓ+ΓΒ
Длина маршрута, км	10 (кадр)	до 500	до 500	до 2000	до 500
Число наблюдений	14	13	≥2	2	46
Чувствительность σ^0_{ne} , дБ	-22	-17	-22	22	-24
Полоса сигнала, МГц	200	50100	50	15×(510) по числу лучей	613
Ширина ДНА, град:					
по азимуту	~1	~1	~1	~1	~5
по углу места	~0,5	~0,5	1	15	~5
Масса аппаратуры, кг,	150				95
суммарно, включая ан- 340					
Энергопотребление, Вт,	1700				520
уммарно 2220					

^{1.} Радиолокационные системы землеобзора космического базирования под редакцией ДТН профессора В. С. Вербы

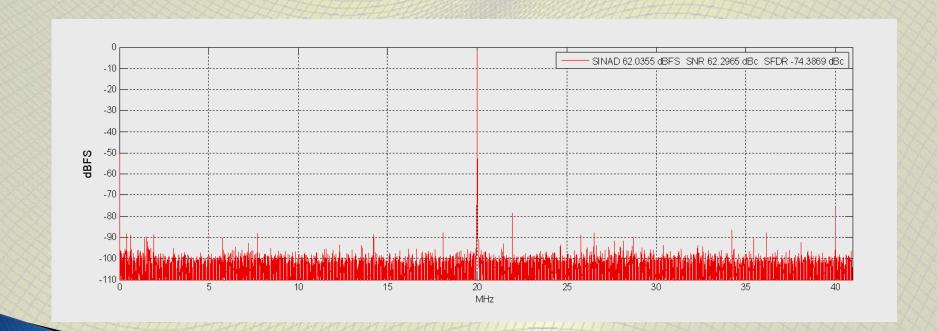
- 4 канала АЦП 12Бит DNL 0.3 LSB, INL 2LSB
- Возможна DSP калибровка
- Интерфейсы USB2.0 до 12 Mbit/s, 16GPIO
- SPI до 40МГц.
- DSP NMC3 2шт, 16Мбит ОЗУ, ARM1176



- DSP NMC3 2шт, 16Мбит ОЗУ, ARM1176
- Возможность подключения антенны непосредственно к входам АЦП.
- > Запоминание и обработка сигналов в чипе
- Работа со всеми медицинскими изотопами в магнитном поле до 4Тл

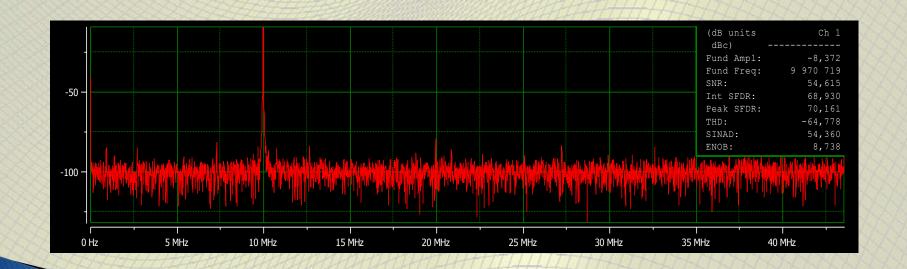
Приёмник ЯМР ядерный магнитный резонанс

4 канала АЦП 12Бит, SNR 62dB, полоса 200MHz, SFDR 78dB в полосе 25МГц К1879ВЯ1Я


Спектрометр энергии распада

- DSP NMC3 2шт, ARM1176, 16Мбит ОЗУ, USB2.0
- 4 канала АЦП 12Бит DNL 0.3 LSB, INL 2LSB
- Полоса аналогового входа каждого АЦП до 800МГц.
- Программная калибровка АЦП средствами DSP
- Обработка наложений импульсов с детекторов
- Большие загрузки (50МГц)

Неразрушающий контроль, ультразвуковая дефектоскопия


- 4 канала АЦП 12Бит DNL 0.3 LSB, INL 2LSB
- Полоса аналогового входа каждого АЦП до 200МГц

Неразрушающий контроль, ультразвуковая дефектоскопия

- DSP NMC3 2шт 16Мбит ОЗУ, ARM1176
- 4 канала АЦП 10Бит DNL 0.5 LSB, INL 2LSB
- Вывод внешнего строба с точностью от 10 ns

Спасибо за внимание!

site: e-mail: www.module.ru rusales@module.ru